CLA isomer t10,c12 induce oxidation and apoptosis in 3t3 adipocyte cells in a similar effect as omega-3 linolenic acid and DHA.
DOI:
https://doi.org/10.31989/ffhd.v7i2.288Abstract
Background: Commercial conjugated linoleic acid (CLA) dietary supplements of contain an equal mixture of the C18:2 isomers, cis-9,trans-11 and trans-10,cis-12. CLA-c9t11 occurs naturally in meat and dairy products as the dominant CLA at 75%, whereas the CLA-t10c12 occurs at <1%. CLA-c9t11 generally promotes lipid accumulation but CLA-t10c12 inhibits lipid accumulation and may promote inflammation.
Methods: Purified CLA-c9t11 and CLA-t10c12 were added to 3T3 mature adipocyte cultures at 100uM concentrations and compared with 100uM C18:3(n-3) (α-linolenic acid) and 50uM docosahexaenoic acid (DHA) to study their effect on growth, gene transcription and general oxidation. The results of 4 separate trials were averaged and compared for significance using one way ANOVA and Student’s t-test.
Results: C18:3(n-3), DHA and CLA-t10c12 were inhibitory to 3t3 adipose cell growth and caused significant lipid hydro peroxide activity. CLA-t10c12 and c9t11 increased AFABP, FAS and ACOX1 mRNA expression but DHA and C18:3(n-3) decreased the same mRNAs. CLA-c9t11 but not the t10c12 stimulated adipoQ expression even though; c9t11 had only a slightly greater affinity for PPARγ than CLA- t10c12. The expression of the xenobiotic metabolism genes, aldo-keto reductase 1c1 (akr1c1), superoxide dismutase (SOD) and inflammation chemokine secretions of eotaxin (CCL11), Rantes (CCL5), MIG (CCL9) and MCP-1 were increased by DHA, C18:3(n-3) and CLA-t10c12. This correlated with apoptosis factors, caspase 3, Bcl-2 and BAXs which were partially reduced by co-treatment with lipophilic anti-oxidant α-tocopherol.
Conclusions: Based on this evidence, CLA-t10c12 promoted more reactive oxygen species (ROS) than CLAc9t11, in a similar effect as C18:3(n-3) and DHA. In response, cascades of genes are activated to deal with the potentially damaging effects of ROS through detoxification, inflammation or apoptosis.
Keywords: CLA-t10c12, CLA-c9t11, gene expression, adipocyte lipid hydroperoxide, DHA,3T3 adipocytes, apoptosis.
Downloads
Published
Issue
Section
License
Any manuscripts or substantial parts of it, submitted to the journal must not be under consideration by or previously published in any other journal or citable form. Authors are required to ensure that no material submitted as part of a manuscript infringes existing copyrights or the rights of a third party. In submitting one's article in any form, the author has assigned the FFC publishing rights and has agreed to an automatic transfer of the copyright to the publisher. This is so that the FFC may create print option journals, for example, at the FFC’s discretion. If the author wishes to distribute their works by means outside of the FFC, for example within their community, they will have to place a request.
Correspondence concerning articles published in Functional Foods in Health and Disease is encouraged. While derivative works (adaptations, extensions on the current work, etc.) are allowed, distribution of the modified material is not allowed without permission from the FFC.