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ABSTRACT 

The infection and chronic inflammatory response generated by Helicobacter pylori is a global health concern. This 

pathogen is characterized as a major risk factor in the development of gastric cancer and other diseases. Conventional 

eradication therapies are based on antibiotic regimens and as a consequence there is an increase in antimicrobial 

resistance of the pathogen strains, besides other potential side effects for the host. Therefore, it is necessary to explore 

new alternatives. This review delves into the realm of antimicrobial peptides, exploring their efficacy against H. pylori 

sourced from diverse origins. Furthermore, it sheds light on food-derived peptides exhibiting remarkable biological 

activity. These peptides exhibit promising effects on biomarkers associated with H. pylori infection, demonstrating anti-

inflammatory and antioxidant properties validated through rigorous testing in both cell and animal models. Regarding 

the anti-inflammatory activity, the peptide VPY derived from soybean and the peptides derived from animal sources such 

as meat (β-Ala-His), egg (DEDTQAMPFR, DEDTQAMPF, MLGATSL, MSYSAGF, CR, FL, HC, LL, MK) and milk (IPAV) have 

reported a reduction of the cytokine IL-8, biomarker directly related to H. infection.  For the antioxidant activity, peptides 

derived from milk (EAMAPK, AVPYPQ) and from Spirulina maxima (LDAVNR, MMLDF) have reduced ROS levels and could 

have a positive effect on the control of H. infection. Food-derived bioactive peptides with an anti-adhesive effect were 

also discussed. They derive from vegetable sources (corn, pea and wheat) and are capable of interacting with the host 

cells, interfering the adherence of H. pylori. Food-derived bioactive peptides have potential to avoid and/or mitigate 
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undesired outcomes of infectious diseases due to the possibility of its application in nutraceuticals and food products, 

resulting in a preventive approach. 
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INTRODUCTION 

Helicobacter pylori (H. pylori) is a gram-negative, helical-

shaped bacterium with flagella, which confer motility 

enabling it to penetrate the protective mucosal layer and 

colonize the gastric epithelium [1-5]. It is estimated that 

half of the world population is infected by H. pylori, but 

the global prevalence varies significantly between 

countries and regions [6,7]. This pathogen boasts a 

myriad of virulence factors, including enzymes, effector 

proteins, adhesins, and other biomolecules. These 

elements bestow distinct characteristics upon the 

pathogen and play a crucial role in shaping the intensity 

and nature of the immune response [8,9]. These 

virulence factors vary between strains, contributing to 

the variation in clinical manifestations [10,11]. The 

immune system of the host will be activated starting 

inflammatory processes and pathways to fight against 

the pathogen, such as the release of cytokines and 

oxidative stress, which can also create conditions 

conducive to damaging host cells [12-14]. 

The infection with H. pylori provokes a chronic 

inflammatory response and it is the strongest risk factor 

for the development of gastric cancer [15-17]. H. pylori 

has been classified by the International Agency for 

Research on Cancer as a class I carcinogen and currently 

correlated with 80% of malignancies associated to 

infectious diseases worldwide [18-20]. For this reason, 

eradicative treatment has been indicated, even in cases 

that patients are asymptomatic, through the application 

of a test-and-treat strategy tailored to each specific case. 
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The treatment for the eradication of H. pylori is 

conducted with classic antibiotic therapy combined with 

strong acid suppressants to potentiate the treatment and 

manage side-effects. The first-line treatment is selected 

based on regional or antibiotic resistance considerations, 

although the therapeutical approach would change 

based on the response to the treatment [21-23].  

Antimicrobial resistance (AMR) is a challenge in the 

treatment of infectious diseases. The escalating 

resistance of H. pylori to antibiotics underscores the 

imperative need to explore alternative methods for 

eradicating this pathogen [24-28]. The main studied 

alternatives are vaccine technologies, probiotics, 

nanoparticles and natural products derived from plants 

[29]. In this regard, there is a growing interest in the use 

of bioactive compounds from food components as 

alternative options to antibiotics. Bioactive compounds 

are food components that can exert health benefits, 

preventing diseases and/or mitigating symptoms [30,31]. 

Among them, antimicrobial peptides (AMPs) are a 

promising option to be used in the treatment of 

antibiotic-resistant bacteria. In contrast to many 

antibiotics, AMPs with antibacterial activity typically have 

a broader range of possible targets, having several 

putative mechanisms of action, which makes challenging 

for bacteria to develop resistance [31-33]. Some AMPs 

have been tested against a variety of pathogens and also 

against H. pylori, showing promising results [31, 32]. 

Besides AMPs, other peptides that do not present 

antibacterial activity can also be useful in the treatment 

of H. pylori infection, helping to regulate the immune 

response of the host provoked by the pathogen. The 

peptides showing anti-inflammatory and antioxidant 

activity can modulate inflammatory and oxidative stress 

biomarkers, being potentially beneficial to prevent 

and/or treat patients against infectious diseases. 

The present work aims to summarize the current 

state of AMPs with activity against H. pylori. These AMPs 

serve as potential alternatives or adjuncts to 

conventional treatments against this pathogen. The 

focus initially lies on AMPs sourced from various origins. 

Later, attention shifts to food-derived peptides with 

biological activity. These peptides have demonstrated 

promising effects on antioxidant and anti-inflammatory 

biomarkers associated with the progression of 

pathologies linked to H. pylori infection. 

H. Pylori as a human pathogen: H. pylori is considered a 

successful human pathogen due to the variety of its 

virulence factors and mechanisms of adaptation which 

are crucial for the colonization of the human stomach 

[8]. Infection with H. pylori may or may not 

produce symptoms, but always results in a gastritis 

phenotype from which its pathological progression 

depends [21]. The survival of this microorganism in the 

stomach and the progression of symptoms depends on 

several variables such as environmental factors, host 

factors and virulence factors [34]. To infect the host, 

the pathogen colonizes gastric epithelial cells with the 

mechanical assistance of flagellar motility, which adjusts 

according to the acidity of the gastric environment 

and acts as a sensor for optimal invasion spots within 

the mucosal layer. 

This colonization process is synchronized with the 

secretion of a variety of enzymes by the pathogen, which 

induce pH changes, alter mucus composition, and release 

effector proteins to facilitate adhesion and invasion of 

host cells, resulting in damage and successful 

colonization (Figure 1) [21, 35]. The H. pylori virulence 

factors and their mechanisms of action have been 

reviewed and explained extensively in the above-

mentioned studies.  
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Figure 1. Main virulence factors and mechanisms for the successful colonization of the host by Helicobacter pylori. Adapted 

from Sharndama and Mba et al. [35].  

The major virulence factors described in literature 

closely related to the infection and progression of the 

disease are the lipopolysaccharide (LPS), adhesins and 

outer membrane proteins (OMPs) and toxins cagA and 

vacA. LPS, present in the outer membrane of the bacteria 

with the function of a protective barrier, plays an 

essential role in the genesis of the infection, being 

recognized by the toll-like receptor 4 (TLR4) and 

activating other receptors and pathways to induce 

immune responses such as interleukin-8 (IL-8) release 

and nuclear factor (NF)-κB activation, amongst other pro-

inflammatory and pre-carcinogenic responses [6]. The 

adhesins and outer membrane proteins (OMPs) primarily 

facilitate the adherence of H. pylori to gastric cells, 

initiating the inflammatory response by recognizing 

specific host cell types for the translocation of bacterial 

effector proteins [36-38]. The progression of the 

infection has also been associated with the presence of 

the cag Pathogenicity Island (CagPAI), a set of 27 genes 

that are unique to the strains that are positive for the 

cytotoxin-associated gene A (cagA-positive), from which 

17 genes are related to the activity of the Type IV 

Secretion System (T4SS) that allows the translocation of 

effector proteins inside the targeted cell inducing 

morphological changes and affecting cell proliferation 

[34, 39-42]. The gene cagA encodes an effector protein 

that is also known as an oncoprotein, therefore patients 

infected with cagA-positive strains are more prone to the 

development of peptic ulcers and to the progression to 

gastric cancer [21,43,44]. Additionally, vacuolating 

cytotoxin A (VacA) is another virulence factor that 

appears to interact functionally with cagA, enhancing its 

accumulation within gastric epithelial cells. However, the 

mechanisms underlying this interaction are not fully 
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understood [45]. Associated with the mentioned 

virulence factors, precisely with cagA, is the enzymatic 

activity of superoxide dismutase (SOD), catalase and 

glutathione peroxidase, that are more active in cagA-

positive strains, resulting in a protection from reactive 

oxygen species (ROS), which can lead to the damage of 

the cells of the host due to ROS overproduction. In 

addition, the oxidative stress generated by ROS 

production promotes H. pylori biofilm formation, 

therefore increasing the pathogen potential for 

multidrug resistance [13, 46, 47].  

As previously noted, the majority of patients 

infected with H. pylori exhibit histologic gastritis, and the 

phenotype of this gastritis will influence the progression 

of symptoms [48-50]. Most of the patients have a mild 

gastritis phenotype that in general is asymptomatic and 

do not affect the acid secretion, 10 to 15% presents the 

duodenal ulcer phenotype that affects the secretory 

function with a higher production of gastrin and acid 

secretion, with disturbances in the inhibitory control of 

acid secretion leading to dyspeptic symptoms and/or 

duodenal ulcer, and less than 1% present the gastric 

cancer phenotype that culminates in a strong reduction 

or absence of acid secretion, leading to severe atrophic 

gastritis, intestinal metaplasia and gastric cancer [21, 34, 

51-53]. In Figure 2, a cascade model for the progression

of H. pylori infection from gastritis to gastric cancer is 

exposed. The progression of the disease may not 

necessarily involve all the stages represented, as it varies 

according to environmental factors (such as smoking, 

alcohol consumption, use of non-steroidal anti-

inflammatory drugs (NSAIDs), and proton pump 

inhibitors), virulence factors, and host factors (including 

genetics and individual immune response) [34, 54-56].

Figure 2. Cascade model proposed by Correa et al. showing the putative progression of H. pylori infection from chronic 

gastritis to gastric cancer [34, 57]. 
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A variety of mechanisms of resistance according to 

the treatment and strain genetic mutations have been 

determined and described in literature [58, 59]. The 

increasing resistance of this pathogen to conventional 

therapies due to adaptative changes of bacterial strains 

is currently of relevant concern. Therefore, the search 

for new therapeutic strategies against H. pylori 

infection is highly significant [60-64]. Nevertheless, 

there is controversy about the need for H. pylori 

eradication treatment when patients do not manifest 

any relevant symptoms due to the fact that it has been 

observed that in some cases the eradication of H. 

pylori is associated with the rise of other pathologies 

such as metabolic syndrome, gastroesophageal reflux 

disease (GERD) and its consequences, including 

esophageal and gastric cardia glandular malignancies 

[65-67]. In children, eradication is not recommended 

and other guidelines must be followed in order 

to manage the infection [68-71]. Besides that, H. 

pylori infection and treatments with virulence factors 

from this pathogen have been reported as an 

immunomodulatory with potential to mitigate 

symptoms for diseases such as inflammatory bowel 

disease and allergic airway diseases [72,73]. 

Furthermore, the pathogen dynamics with the 

microbiota of the gastrointestinal tract is highly 

complex, and eradication not only affects the 

gastrointestinal tract itself, but also its absence has 

been associated with dysbiosis and the emergence of 

a variety of systemic disorders, weight gain or loss, 

and susceptibility to allergic diseases such as asthma 

[43, 74-79]. In contrast, research over the years 

has demonstrated that eradicating H. pylori prior to 

the onset of precancerous histological changes can 

prevent the development of gastric cancer and 

dysbiosis can be managed with the integration to the 

antibiotic treatment of probiotics and other 

alternatives for microbiota modulation [80-82]. This 

forms the basis for the screen-and-treat approach to 

H. pylori infection and optimization strategies such as

family-based. [21, 76, 83]. 

According to the latest guidelines from the World 

Gastroenterology Organization, achieving successful 

eradication of the pathogen requires consideration of 

several factors. The recommended principles to select a 

therapy are based in treatment trials data combined with 

resistance assessments and other measurements that 

could be useful, being evaluated according to regions 

[76]. The transmission of the infection is not well 

determined, but it occurs in the early childhood and since 

the infection is often asymptomatic, it is a challenge to 

diagnose and treat it [84, 85]. The most common 

antibiotic therapy is conducted using a proton pump 

inhibitor with amoxicillin and clarithromycin. 

AMPs and other peptides with biological activity can 

be among the compounds that, even without eradicating 

H. pylori, can contribute to modulate its virulence and

restore the equilibrium in the gastric ecosystem. 

Considering the characteristics and the mechanism of 

action of the AMPs that commonly target the bacterial 

cell membrane through multiple mechanisms and 

pathways, the efficacy of the treatment is increased and 

the development of resistance becomes unlikely to occur 

[24, 31, 86-89].  

Antimicrobial Peptides as alternatives to conventional 

therapies: The use of antimicrobials dates from ancient 

civilizations with treatments based on natural sources 

such as plants, honey and animal excrements. The 

antibiotics were a groundbreaking discovery and the 

development of these substances reduced significantly 

the mortality by infectious diseases [90-94], which makes 

it the conventional therapy for communicable diseases in 

medicine until the present day. However, the 

development and widespread use of antibiotics have 

directly influenced changes in targeted microorganisms, 

resulting in antibiotic resistance as a consequence of 
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evolutionary changes in bacteria [95-98]. As one of the 

primary concerns in healthcare, global antibiotic 

resistance has led to heightened interest in discovering 

new antimicrobial agents and is recognized as a 

significant global threat to modern medicine [99-102]. 

The last new class of antibiotics was discovered in the 

1980s and with the course of time antimicrobial 

resistance has been addressed as an urgent problem. In 

2015, the World Health Organization declared it as a 

global emergency making a priority to find new 

alternatives to be used against health-threatening 

microorganisms, developing a global action plan [103]. 

AMPs are sequences that generally have less than 

100 amino acids. These peptides were identified in the 

late 1990s associated with the innate immune system of 

insects and plants, being subsequently identified in all life 

domains due to the interest in its discovery and the 

potential use against pathogens [31, 104, 105]. There are 

currently 4005 peptides entries on the Antimicrobial 

Peptides Database (APD) [106]. From them, 3437 are 

AMPs that can exert also other bioactive effects 

concurrently, such as antioxidant and anti-inflammatory. 

In Figure 3 the distribution of AMPs according to their 

deriving life kingdom is graphically represented. 

These peptides can be naturally produced by 

organisms as a mechanism of defense against pathogens 

and other threats in biological endogenous processes, 

but like other bioactive peptides, can also be obtained 

through fermentation, digestion, extraction, and 

hydrolysis [107-109]. Peptides with biological activity can 

also be synthesized based on a predicted biological 

function of the sequence and its characteristics, taking 

the structure of natural peptides as a model but not 

directly derived from them [110-112]. 

Figure 3. Distribution of peptides entries (4005) in the Antimicrobial Peptides Database according to life kingdom of origin 

[106]. 

The Data Repository of Antimicrobial Peptides 

(DRAMP) [113] is another database for such peptides, 

containing over 6000 entries of general AMPs, including 

both natural and synthesized ones. These peptides are 

classified according to their attributed target for 

biological activity, as shown in Figure 4. As described 

above, AMPs can perform various functions and thus can 

be utilized for different purposes. Out of 4159 entries in 
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the DRAMP database, 2562 have demonstrated effects 

specifically against gram-negative bacteria. Although the 

majority have not yet been elucidated regarding their 

binding target and/or mechanism of action, there is a 

recurring tendency suggesting that the putative action 

of these peptides could mainly be related to the 

cell membrane and LPS-binding.  

Bioactive Peptides as antibacterial tools against 

Helicobacter Pylori: AMPs peptides that have proven 

effective against H. pylori come from both natural and 

synthetic sources based on natural structures. They are 

the following: a) Pexiganan or MSI-78; b) Tilapia piscidins 

(3 and 4); c) Epinecidin-1; d) Cathelicidins (human 

cathelicidin LL-37 and mouse cathelicidin CRAMP); e) 

Defensins (Human neutrophil peptide 1 and SolyC); f) 

Bicarinalin; g) Odorranain-HP; h) PGLa-AM1; i) 

Bacteriocins (Nisin A, Lacticin a164, Lacticin BH5, Lacticin 

jw3, Lacticin NK24, Pediocin PO2, Leucocin k and others 

without specified sequence) [32]. These peptides share 

some common characteristics according to the 

conducted analysis: all of them are cationic and 

positively charged at pH 7.4, mainly presenting α-helical 

structure and ranging between 1.99 to 4.4 kDa of 

molecular weight. These peptides are mostly associated 

with secreting processes and the immune cells’ 

activities. 

Figure 4. Number of peptides entries in the Data Repository of Antimicrobial Peptides (DRAMP) according to biological 

function [113]. 

Recently, new peptide sequences with similar 

characteristics have been identified, demonstrating anti-

H. pylori effects. One such peptide is HF-18, derived from

the intestine of Hagfish. HF-18 has exhibited potent 

antibacterial activity against strains of H. pylori that are 

resistant to clarithromycin and amoxicillin [114]. In 

research involving black soldier flies, the production of 

antimicrobial peptides (AMPs) was induced in larvae 

challenged with Escherichia coli. Four sequences derived 

from these AMPs were subsequently tested against H. 

pylori, demonstrating a potent effect comparable to that 

observed with metronidazole [115]. Additionally, 

another study utilizing Attacin A, a peptide derived from 

the cecropia moth, revealed a reduction in the 

histological changes caused by H. pylori infection in rats 

[116]. The guided production of AMPs is also an 

interesting mechanism used to obtain antibacterial 

peptides. In a study conducted using an engineered 

Lactococcus lactis strain co-cultured with H. pylori in 

order to obtain guided-AMPs (gAMPs), these peptides 

were tested in mice infected with H. pylori. They were 

found to effectively eliminate the pathogen, although a 

rebound effect was observed in other gastric species 

[117]. The majority of the AMPs that have enough 

evidence to be used clinically are antibacterial peptides 

but a clinical trial has only been conducted for MSI-78 
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(Pexiganan). It is an analog of the Magainin-2, a peptide 

derived from the African clawed frog. The trials were 

conducted for its application in the treatment of impetigo 

and diabetic foot ulcers, and it failed to be approved [113, 

118]. In order to potentiate the effects of MSI-78, studies 

tested the nanoencapsulation of the peptide and also 

surface grafting onto nanoparticles, showing high 

potential in gastric infection management [119]. From 

food-derived peptides, SolyC is the only one with known 

effect against H. pylori. This peptide was synthesized 

based on a tomato defensin and have shown 

antibacterial and anti-inflammatory effects against H. 

pylori and a variety of pathogens [120]. Other 

compounds from food sources, such as polyphenols, and 

carotenoids, have shown bactericidal effects against H. 

pylori, but not other peptides [106, 121]. 

Other bioactive peptides are putative useful in 

Helicobacter Pylori prevention/treatment: In addition to 

antibacterial peptides, there are other bioactive peptides 

that could be of potential interest in the treatment of H. 

pylori infection. These mainly include anti-inflammatory 

and antioxidant peptides. The immune response to H. 

pylori is a combination of events that can be both 

protective and detrimental to the host. In fact, much of 

the pathological evidence related to H. pylori infection is 

considered to arise from the action of the host immune 

system rather than from the bacterial infection itself 

[34]. In the process of colonization of gastric cells, H. 

pylori produces a severe inflammatory response 

mediated by neutrophils and macrophages, which 

contribute to the generation of ROS in the epithelial 

tissue [47]. For this reason, modulation of the 

inflammatory and oxidative response in the gastric 

cells has been shown to be particularly effective, 

avoiding tissue damage and the progression of 

pathologies associated with H. pylori infection 

[121].  Table 1 summarizes the putative beneficial 

food-derived peptides against H. pylori based on their 

anti-inflammatory and antioxidant activity results 

observed in immune cells, as well as in vitro and/or 

in vivo models of gastrointestinal inflammation. These 

peptides exhibit effects on biomarkers associated with 

H. pylori infection signaling pathways.  

Table 1. Putative useful food protein-derived peptides against H. pylori infection 

Source Process Sequence Cell/Animal Model Bioactivity Reference 

Fish protein Enzymatic 
hydrolysis 

Not specified Human and rat 
intestinal epithelial 
cells 

Anti-inflammatory, increase of 
proliferation 

[122] 

Mouse colitis Improvement of healing [123] 

Salmon 
protein 

Enzymatic 
hydrolysis 

PAY LPS-induced 
RAW264.7 cells 

Inhibition of inflammation 
Reduction of NO, PGE2, TFN-α, 
IL-6, IL-1β, iNOS, and COX-2 
production/expression 

[124] 

Ruditapes 
philippinarum 

Enzymatic 
hydrolysis 

QCQQAVQSAV LPS-induced 
RAW264.7 cells 

Inhibition of inflammation 
Inhibition of NO production 

[125] 

Meat 
products 

Commercial β-Ala-His (carnosine) H2O2-induced Caco-2 
cells 

Inhibition of inflammation via 
MAPK and PepT1 pathways 
Inhibition of IL-8 and p38 and 
ERK activation 

[126] 

Velvet antler 
protein from 
red deer 

Hydrolysis VH, LAN, IA, AL LPS-induced 
RAW264.7 cells 

Inhibition of inflammation 
Inhibition of NO production 

[127]
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Source Process Sequence Cell/Animal Model Bioactivity Reference 

Egg white 
protein 

Enzymatic 
hydrolysis 

DEDTQAMPFR, 
DEDTQAMPF, 
MLGATSL, MSYSAGF 

TNF-α-induced Caco-
2 cells 

Inhibition of inflammation via 
MAPK pathway 
Inhibition of TNF-α, IL-8, IL-6, IL-
1β, IL-12, JNK, IκB, and p38 
expression Increase of IL-10 
expression 

[128] 

Egg 
ovotransferrin 

Synthesized 
based on 
simulated 
peptide-cut 

CR, FL, HC, LL, MK TNF-α-induced Caco-
2 cells 

Inhibition of intestinal 
inflammation 
Reduction of IL-8 secretion and 
TNF-α, IL-8, IL-6, IL-1β, and IL-
12 expressions 
Increase of IL-10 expression 

[129] 

Casein In vitro 
gastrointestinal 
digestion 

EAMAPK, AVPYPQ 
H2O2-induced IEC-6 
cells 

Antioxidant 
Reduction of ROS levels 
Increase of SOD and Nrf2 
activities 

[130] 

Bacterial 
fermentation 

Not specified Mouse colitis Anti-inflammatory [131] 

Enzymatic 
hydrolysis 

Not specified Macrophages Downregulation of COX-2 NF-κB 
inhibition 

[132] 

Whey protein Enzymatic 
hydrolysis 

Not specified Intestinal Epithelial 
cells 

Reduction of IL-8 [133] 

IPAV TNF-α-induced Caco-
2 cells 

Inhibition of intestinal 
inflammation via PepT1 
Reduction of IL-8 and inhibition 
of NF-κB, ERK1/2, JNK1/2, Syk, 
and p38 expression 

[134] 

Soybean 
protein 

Enzymatic 
hydrolysis 

Lunasin Macrophages Reduction of cytokines NF-kB 
inhibition 

[135] 

VPY Mouse colitis Reduction in cytokines, 
oxidative stress, and improved 
histology 

[136] 

Synthetic FLV TNF-α-induced 3T3-
L1 co-cultured with 
RAW264.7 

Inhibition of inflammation 
Inhibition of TNF-α, IL-6, and 
MCP-1 production and JNK, IKK, 
and IκBα expression 

[137] 

Defatted 
soybean meal 
protein 

Ion-exchange 
cromatography 
(IEC) and size 
exclusion 
cromatography 
(SEC) 

Lunasin LPS-induced 
RAW264.7 cells 

Inhibition of inflammation 
Inhibition of NO and PGE2 
production and COX-2 and iNOS 
expressions 

[138] 

Germinated 
soybean 
protein 

Enzymatic 
hydrolysis 

QQQQQGGSQSQ, 
QEPQESQ, 
QQQQQGGSQSQSQK, 
PETMQQQQQQ 

LPS-induced 
RAW264.7 cells 

Inhibition of inflammation 
Inhibition of NO and PGD2 
production 

[139] 

Soy 
hydrolysate 

- VPY Caco-2 cells 
THP-1 macrophages 
colitis DSS-induced 
mice 

Treat IBD via PepT1 
Inhibition of IL-8 and TNF-α 
secretions 

[136] 

Amaranth 
protein 

Enzymatic 
hydrolysis 

GPR LPS-induced 
Human THP-1 and 
RAW264.7 cells 

Inhibition of inflammation via 
NF-κB pathway 
Inhibition of TNF-α secretion 

[140]
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Source Process Sequence Cell/Animal Model Bioactivity Reference 

SSEDIKE Caco-2 cells Inhibition of inflammation 
Reduction of CCL20 and NF-κB 
expressions 

[141] 

Germinated 
amaranth 
flour 

Gastrointestinal 
digestion 

Putative RAW264.7 cells Anti-inflammatory [142] 

Wheat gluten Hydrolysis and 
fractionation 

Pro-glutamyl leucine Mouse colitis Improvement of mucosal 
histology 

[143] 

Synthesized by 
conventional 
solution 
method 

pyroGlu-Leu LPS-induced 
RAW264.7 cells 

Inhibition of inflammation via 
NF-κB and MAPK pathways 
Inhibition of NO production, 
TNF-α, IL-6, and IκBα 
degradation, and JNK, ERK, and 
p38 phosphorylation 

[144] 

Spirulina 
maxima 

Enzymatic 
hydrolysis 

LDAVNR, MMLDF RBL-2H3 mast cells 
and histamine-
stimulated EA.hy926 
endothelial cells 

Inhibition of inflammation 
Reduction of histamine release, 
IL-8 production, and ROS 
production 

[145] 

CCL20: Chemokine ligand 20; COX-2: Cyclooxygenase-2; 

ERK: Extracellular signal-regulated kinase; IBD: 

Inflammatory bowel disease; IKK: Inhibitor of NF-kappaB 

kinase; IκB: IkappaB kinase; IL-1β: interleukin-1beta; 

IκBα: nuclear factor of kappa light polypeptide gene 

enhancer in B-cells inhibitor alpha; IL-6: interleukin-6; 

IL-8: interleukin-8; IL-10: Interleukin-10; IL-12: 

Interleukin-12; iNOS: inducible nitric oxide synthase; 

JNK: Jun N-terminal kinase; MAPK: Mitogen-activated 

protein kinase; MCP-1: Monocyte chemoattractant 

protein-1; NO: Nitric oxide; NF-κB: Nuclear factor kappa-

light-enhancer of activated B cells; Nrf2: Nuclear factor 

erythroid 2-related factor 2; PepT1: Proton coupled 

oligopeptide transporter 1; PGD2: Prostaglandin D2; 

PGE2: Prostaglandin E2; p38: MAPK signal transduction 

mediator; ROS: Reactive oxygen species; SOD: 

Superoxide dismutase; Syk: Syk non-receptor tyrosine 

kinase; TFN-α: Tumor necrosis factor Alpha.  

In addition to their anti-inflammatory and 

antioxidant effects, there is growing interest in food-

derived peptides that can bind to adhesins. These 

peptides have the potential to directly interfere with 

bacterial adherence to host cells, thereby either 

preventing infection or reducing its pathological effects 

[146]. In Table 2, food-derived peptides with anti-

adhesive and other effects against H. pylori in infected 

cell models and mice are listed

Table 2. Anti-adhesive food-derived bioactive peptides obtained through enzymatic hydrolysis process effective against H. 

pylori 

Source Model Effective dosage Bioactivity Reference 

Corn protein Infected GES-1 cells 
Infected mice 

4 mg/mL 
400–600 mg/kg·bw 

Anti-adhesive 
Anti-inflammatory 
Inhibition of 
histological changes 

[147] 

Corn gluten meal Infected GES-1 cells 4 mg/mL Anti-adhesive 
Antioxidant 
Anti-inflammatory 

[148] 

Pea protein Infected AGS cells 100-500µg/mL Anti-adhesive [149, 150] 

Defatted Wheat germ 
protein 

Infected GES-1 cells 10 mg/mL Anti-adhesive [151]
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CONCLUSIONS 

The rise in resistance to commonly used antibiotics in 

conventional treatments against H. pylori has triggered 

an increasing interest in the search for alternative 

options. Among them, AMPs may be of special interest, 

mainly because many peptides may have a dual function 

and act as antibacterial and antioxidant, thus 

contributing to modulate the inflammatory process 

associated with H. pylori infection. Moreover, certain 

AMPs have the potential to interfere with H. pylori 

colonization of epithelial cells, thereby impeding the 

pathogen's evasion strategies against the immune 

system. At present, the available analytical and 

bioinformatics tools should contribute to the 

identification, characterization and production of new 

peptides useful in the future for the treatment of human 

infection by H. pylori. 

Abbreviations: AMPs: antimicrobial peptides; AMR: 

Antimicrobial resistance; APD: Antimicrobial Peptides 

Database; CagA: cytotoxin-associated gene A; CagA-

positive: positive for the cytotoxin-associated gene A; 

CagPAI: cytotoxin-associated genes pathogenicity Island; 

CCL20: Chemokine ligand 20; COX-2: Cyclooxygenase-2; 

DRAMP: Data Repository of Antimicrobial Peptides; ERK: 

Extracellular signal-regulated kinase; gAMPs: guided-

AMPs; GERD: gastroesophageal reflux disease; H. pylori: 

Helicobacter pylori; HF-18: intestinal peptide from 

Hagfish; IBD: Inflammatory bowel disease; IKK: Inhibitor 

of NF-kappaB kinase; IL-10: Interleukin-10; IL-12: 

Interleukin-12; IL-1β: interleukin-1beta; IL-6: interleukin-

6; IL-8: interleukin 8; IL-8: interleukin-8; iNOS: inducible 

nitric oxide synthase; IκB: IkappaB kinase; IκBα: nuclear 

factor of kappa light polypeptide gene enhancer in B-cells 

inhibitor alpha; JNK: Jun N-terminal kinase; LPS: 

Lipopolysaccharide; MAPK: Mitogen-activated protein 

kinase; MCP-1: Monocyte chemoattractant protein-1; 

NF-κB: Nuclear factor kappa-light-enhancer of activated 

B cells; NO: Nitric oxide; Nrf2: Nuclear factor erythroid 2-

related factor 2; NSAIDs: non-steroidal anti-inflammatory 

drugs; OMPs: Outer membrane proteins; p38: MAPK 

signal transduction mediator; PepT1: Proton coupled 

oligopeptide transporter 1; PGD2: Prostaglandin D2; 

PGE2: Prostaglandin E2; ROS: reactive oxygen species; 

SOD: superoxide dismutase; Syk: Syk non-receptor 

tyrosine kinase; T4SS: Type IV Secretion System; TFN-α: 

Tumor necrosis factor Alpha; TLR4: toll-like receptor 4; 

VacA: vacuolating cytotoxin A. 
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