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ABSTRACT 

Background: Derivatives of small carbocycles (cyclobutanes and cyclopropanes) are known as bioactive molecules. 

Both their natural and synthetic representatives have multiple applications. Particularly, 1-aminocyclopropane-1-

carboxylic acid (ACC) serves as the well-studied ethylene biosynthesis precursor. The development of new 

functionally substituted cyclopropane carboxylic acids, which show promise as effective inhibitors of ethylene 

biosynthesis, is crucial for regulating the plant cycle and preserving the quality of fruits and vegetables. 

Objectives: This research focused on the in-silico studies aimed at developing a universal and affordable methodology 

for synthesizing new analogs of ACC and assessing their modulating activity on ethylene biosynthesis in plants. The 

findings from this in silico research provide a foundation for the upcoming in vitro studies. 

Results: The elaborated efficient catalytic system [Cu(I) salt/amine/DMSO] enabled the synthesis of model 

compounds under mild conditions, resulting in increasing yields up to quantitative levels. For bioactivity preliminary 

assessment we performed in silico research of newly synthesized (E)-2-phenyl-1-chlorocyclopropane-1-carboxylic 

acid and drug-design an appropriate 1-amino-derivative as the inhibitor of 1-aminocyclopropane-1-carboxylate 
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oxidase 2 (ACO2) of Arabidopsis thaliana. Docking results showed certain advantages of the newly synthesized 

compound in comparison to well-known inhibitors of ethylene biosynthesis. 

Conclusions: The recommended synthetic technology has increased efficiency in yield quantification. In silico studies, 

a high affinity for ACO2 has been demonstrated. The synthesized compounds exhibit superior characteristics 

compared to widely used market preparations for regulating ethylene biosynthesis. More detailed comparative in 

vitro studies are planned. 

Key words: plant growth regulation, cyclopropane carboxylic acids, ethylene biosynthesis inhibitors, molecular docking, 

atom transfer radical addition (ATRA), Cu(I) Complex catalyst. 

Graphical Abstract: New functionally substitutes cyclopropanecarboxylic acids as ethylene biosynthesis innovative 

regulators
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INTRODUCTION: 

Ethylene is one of the most important plant hormones 

[1]. This gaseous compound is important for the 

development and regulation of plants. Ethylene 

biosynthesis is significant not only as the agent of the 

growth processes regulation but also, as the stress-

response processes in plants. Ethylene directly regulates 

various physiological processes in plants, including 

growth acceleration, seed dormancy breaking, fruit  

maturation, germination, cell elongation, fruit ripening, 

nodulation, plant senescence, and the abscission of 

flowers and leaves. Ethylene is produced in cells from 

methionine (Met) through a series of enzymatic reactions 

that begin with the formation of S-adenosylmethionine 

(SAM). This is followed by its catalytic transformation into 

1-aminocyclopropane-1-carboxylic acid (ACC) via the

activity of the enzyme ACC synthase (ACS). Finally, this 

compound (ACC) is converted to ethylene, carbon  
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dioxide, and cyanide by ACC oxidase (ACO) [4-5]. 

According to multiple research data, ACC is considered 

the direct precursor for ethylene biosynthesis. The 

application of exogenous ACC is being used in studies of 

ethylene metabolism in different tissues of plants. In 

accordance with the results of recent years' discoveries, 

ACC is being considered as a component of some 

signaling pathways [6-7]. 

Many chemical inhibitors of ethylene biosynthesis 

are applicable for studies of plant development, 

hormonal regulation, signal transduction, and other 

various physiological processes mechanisms [8]. 

There are different ethylene biosynthesis inhibitors 

commonly used for commercial purposes or to study the 

ethylene action in plants, including pyrazinamide, 2-

aminoethoxyvinyl glycine (AVG), Ag+ ions, as well as 1-

methylcyclopropene (1-MCP) gas [9 - 11]. 

Pyrazinamide (PZA) is a drug, clinically used against 

tuberculosis that exerts antibacterial activity by acting as 

a target degrader [12]. In plant cells, this compound is 

converted to pyrazinoic acid, which decreases the activity 

of 1-aminocyclopropane-1-carboxylic acid oxidase (ACO). 

This enzyme ensures the catalysis of the final step of the 

biosynthesis of ethylene [13].  

Moreover, silver nitrate and PZA is effective for in 

vitro plants salt tolerance increase by interfering with the 

effect of ethylene or ethylene generation. It is also 

associated with the reduction of H₂O₂ and 

malondialdehyde (MDA), as well as the modulation of 

catalase, ascorbate peroxidase, and superoxide 

dismutase (SOD) activity, which are essential 

components of the antioxidant system [14]. 

1-Methylcyclopropene (1-MCP) can inhibit ethylene

effect. Thus, it can have a positive impact on the quality 

of various horticultural and agricultural products [15]. 1-

MCP is primarily used to maintain visual characteristics 

(such as color and flavor), internal texture, and 

acid/sugar taste qualities, particularly after removal from 

cold storage. Unlike apples, other climacteric fruits 

require a delay in ripening, rather than inhibition, to 

ensure high quality and the desired product 

characteristics. The other factor of 1-MCP application 

limits is the cost/benefit relation, which is not 

appropriate to the market needs [16]. This compound 

also has some drawbacks when applied to fruits. 1-MCP 

can irreversibly inhibit ripening, particularly the softening 

of the flesh, which is necessary for optimal food product 

quality. In addition, 1-MCP treatment can lead to 

increased shriveling in fruit. Furthermore, 1-MCP 

treatment delays the changes in color variables in core 

tissues but not in peel and cortex tissues, and it can also 

delay cortex and core browning. Another drawback of 1-

MCP is that it can delay the second glucose peak during 

fruit ripening. Lastly, treatment with 1-MCP inhibits 

aroma emission during the early storage of peach fruit 

[17]. 

Cyclopropane carboxylic acid derivatives have been 

studied for their role as inhibitors of ethylene 

biosynthesis in plants [18]. For example, cyclopropane-

1,1-dicarboxylic acid (CDA) and trans-2-

phenylcyclopropane-1-carboxylic acid (PCCA), as the 

structural analogs of 1-aminocyclopropane-1-carboxylic 

acid (ACC) are demonstrating the inhibitory influence on 

the wound ethylene produced by fruit discs of 

Lycopersicum esculentum [19-20]. 

Known synthetic methods for the creation of 

scaffolds of cyclopropane carboxylic acid derivatives 

mainly have only laboratory-scale applications and are 

not useful for industrial goals. Their synthesis requires 

expensive reagents, and long conversion times for 

average yields [21-22]. 

In the current research we discuss the questions of 

elaboration of general universal methodology of 

cyclopropane carboxylic acid derivatives synthesis and in 

silico assessment of their biological activity as the 

regulators of ethylene biosynthesis with the potential 

application in green agriculture and food industry.  
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MATERIALS AND METHODS: 

The easily feasible technological method of synthesis of 

functionally substituted carboxylic acids was advised. The 

first step includes ATRA (atom transfer radical addition) 

trihaloacetic acid derivatives to unsaturated substrates 

(terminal olefins). The second step is the consistent 

dehalogenation-cyclopropanation of the forming 1,3-

dihalides with Zn/Cu pair or other metals (Fig. 1). The 

general synthetic techniques for ATRA were elaborated 

for the creation of cyclobutene carboxylic acids 

derivatives [23].  

The chromatographic analysis and control of the 

consumption of starting and formation of synthesized 

compounds were conducted using the gas 

chromatograph (GC). (There were used: Agilent 

Technologies GC-7809B, capillary column - DB-WAX-30 

m-320 μm x 0.25 mcm, FID (Flame Ionization Detector),

temperature of detector is 300 °C, temperature of 

injector is 250 °C, flow rate gas (N2) is 6 mL /min, column 

temperature is 40 °C; hold during 2 min, 7 °C/min 235 °C 

hold for 5 min). The mixture of reactants was separated 

by column and preparative chromatographic methods. 

Column chromatography was performed in a glass 

column, 200-700 mm high, 25 mm in diameter, filled with 

silica gel L 40/100, eluent was diethyl ether/hexane in a 

ratio of 1:20. The components of the mixture were 

detected by a selective method of light absorption of 

ultraviolet rays (UV-254). TLC (Thin-layer 

chromatography) analyses were carried out using Silufol 

UV-254 plates. Visualization was carried out in the 

presence of iodine vapor and a solution of potassium 

permanganate. Fisher-John’s device was applied for the 

melting point measurements. 

The molecular characteristic of the target 

compound (1-chloro-2-phenyl- derivative) was 

elucidated by NMR (Nuclear Magnetic Resonance) 

experiments and the structure of the studied compound 

was approved by the X-ray analyses [24-25].  

The spectrometer Varian Mercury-300 at operating 

frequencies 300.077 MHz (1H), and 75.46 MHz (13C) was 

applied for the NMR spectral studies. The chemical shifts 

were reported with respect to TMS (Tetramethylsilane). 

The signal assignment in the 1H and 13C NMR spectra was 

performed by the application of methods standard 

steady-state Nuclear Overhauser Effect difference 

technique (NOEDIF), Heteronuclear Multiple Quantum 

Coherence (HMQC), and by registering 13C NMR spectra 

without decoupling from protons [23-24].   

 Figure 1. The general scheme of synthetic transformations. 

The advised improvement of synthetic methodology (the 

application of highly active catalytical system, which is 

based on DMSO as catalytic co-ligand-solvent) is 

universal offer an opportunity to obtain not only 

cyclopropane carboxylic acid derivatives without Cl-

substituent (in cyclopropane structure X=H, in case of 

dichloroacetic acid derivatives as the agents). The 

mentioned above methodology also is appliable for the 

synthesis of (E)-(1R, 2R)-2-phenylcyclopropane-1-

carboxylic acid and (E)-(1S, 2S)-2-phenylcyclopropane-1-

carboxylic acid. These compounds are well-known as the 

ethylene biosynthesis inhibitors. Their activity was tested 

in vivo.  
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(E)-1-chloro-2-phenylcyclopropane-1-carboxylic acid: 

mp = 93-95 °C (CCl4). 1Н NMR spectrum, δ, ppm (J, Hz): 

1.92 (1H, dd, J=8.7; 6.2, cis-HaHbC–CHPh); 2.22 (1H, dd, 

J=10.2; 6.2, cis-HaHbC–CHPh); 3,14 (1H, dd, J=10.2; 8.7, –

CHPh); 7.25-7.55 (5H, m, Ph); 10.67 (1H, br.s, COOH). 13C 

(75.5 MHz, CDCl3) δ, ppm: 176.8 (–COOH); 133.6 (–Ph); 

129.7 (o-Ph); 128.3 (m-Ph); 127.9 (p-Ph); 44.3 (–

CClCOOH); 34.5 (–CHPh); 24.3 (–CH2–). The structure of 

synthesized new derivatives of cyclopropane series was 

summarized based on the obtained data of NMR analyses 

and by the comparison of appropriate spectral 

characteristic of analogue cyclopropane scaffoldings [26-

28].  The relative configuration of phenyl- and carboxylic 

groups were determined by the absolute value of the 

vicinal 3Jtrans (13C, 1H) coupling constant. This is also 

evidenced by the multiplicity of signals (td) and spin-spin 

interaction constants 3J(1H, 13C)  values 3Jt(1H, 13C)=4 Hz 

and 3Jt(1H, 13C) = 2 Hz of carboxylic group  and  phenyl-

substituent bonded at cyclopropane ring in the cis- 

location [29-30].  

Molecular Docking analyses: The molecular docking 

methods and the other computational analyses were 

applied for the carried in silico research. The mentioned 

methodology was used for the comparative study of 

known ethylene biosynthesis inhibitors, newly 

synthesized (E)-1-chloro-2-phenylcyclopropane-1-

carboxylic acid and for proposed drug-design of 1-amino-

2-phenylcyclopropane-1-carboxylic acid, synthetic ACC

derivatives [31]. Three dimensional models of studied 

compounds were constructed by the cheminformatics 

protocols [32], three-dimensional molecular models of 

studied structural analogues of ACC: (E)-1-chloro-2-

phenylcyclopropane-1-carboxylic acid [(1S,2R) and 

(1R,2S) isoforms], (E)-1-amino-2-phenylcyclopropane-1-

carboxylic acid [(1R,2S) and (1S,2R) isoforms], such as like 

the well-known inhibitor (E)-2-phenylcyclopropane-1-

carboxylic acid [(1R,2R) and (1S,2S) isoforms] were 

constructed. Same procedure was applied for the 

commercially widely used methylcyclopropane as well as 

pyrazinoic acid (fig. 2). 

Figure 2. Structures of studied molecules: A) Methylcyclopropane; B) Pyrazinoic acid; C1) (E)-(1R,2R)-2-phenylcyclopropane-1-carboxylic acid;

C2) (E)-(1S,2S)-2-phenylcyclopropane-1-carboxylic acid; D1) (E)-(1R,2S)-1-chloro-2-phenylcyclopropane-1-carboxylic acid; D2) (E)-(1S,2R)-1-chloro-2-

phenylcyclopropane-1-carboxylic acid; E1) (E)-(1R,2S)-1-amino-2-phenylcyclopropane-1-carboxylic acid; E1) (E)-(1S,2R)-1-amino-2-phenylcyclopropane-1-

carboxylic acid. 

Three-dimensional model of the studied target was 

taken from the RCSB database [https://www.rcsb.org/] 

with PDB ID: 5GJ9 (ACO2, Arabidopsis thaliana); 

Molecular docking analysis was conducted by the 

software package of AutoDock Vina and AutoDock Tools. 

The analysis was performed independently 5 times using 

20 starting conformations for each of studied compound, 

with the virtual box size not exceeding 27,000 Å. To 

determine the binding constant of the studied 

compounds with targets the following equation (1) was 

used: 









−=

K
RTG

1
lnexp

(1), 

where ΔG - is the Gibbs energy, R - is the gas constant, T 

- is the absolute temperature, K - is the binding constant

[33].

RESULTS: 

As a result of the conducted research the highly efficient 

Cu(I) catalytic system was elaborated: [Cu(I) complex 

Catalyst: 1) CuBr - 10 mol% to substrate, 2) secondary 

ammine, 3) catalytic co-ligand/solvent – DMSO․ Molar  
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ratio 1):2):3) = 1:1:7-10], reaction time: 1.5-2 h, adducts 

yield: up to 95%. Previously conducted docking study of 

ethylene biosynthesis inhibitory activity of newly 

synthesized (E)-1-chloro-2-phenylcyclopropane-1-

carboxylic acid [(1S,2R) and (1R,2S) isoforms] showed 

good results in comparison to commercially applicable 

methylcyclopropane and known inhibitor 

pyrazinecarboxylic acid on ACO2 (Arabidopsis thaliana) 

enzyme.Taking into consideration these successful 

results of in silico studies of 1-chlorine- derivatives and 

such as the known fact that the native inhibitors are 

amino acids, the drug design of appropriate amino-

derivatives was carried out. Docking results are 

presented in Tables 1-2. The graphical expression of 

molecular docking analyses of the interactions between 

different derivatives of cyclopropane carboxylic acids 

with ACO2 enzyme macromolecule is presented in Fig. 3. 

Figure 3. Molecular the interaction of various cyclopropanecarboxylic acids derivatives with 1-aminocyclopropane-1-carboxylate oxidase 

2 (ACO2) enzyme. 

Table 1. Binding sites of studied molecules. * - H-bond 

Binding 

sites 

Methylcyclo- 

propane 

Pyrazinoic 

acid 

(E)-1-amino-2-

phenylcyclopropane-1-

carboxylic acid 

(E)-2-phenyl-

cyclopropane-1-

carboxylic acid 

(E)-1-chloro-2-

phenylcyclopropane-1-

carboxylic acid 

1R,2S 1S,2R 1R,2R 1S,2S 1R,2S 1S,2R 

Leu177 - + + + - + - + 

Leu189 + + + + + + + + 

Leu198 + + + - + + + + 

Val239 - - + - - + + + 

Ser249 + + + + + + - + 

Tyr165 - - + + + - - - 

Lys161 - + + + + - + +* 

Ala251 - - + + + + + +* 

Ile187 - - + - + - + + 

Phe36 - - - - - - - + 

His237 - + + + - + +* + 

Phe253 - - + - - - + - 

Asn219 - - + + + + +* - 

Arg247 + + - + - + - - 

His180 - + - - - - - - 

Asp182 - - - + + - - - 

Ser163 - - - + + - + +* 
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Table 2. The results of molecular docking. 

Ligand ΔG(kcal/mol) Kb(M−1) 

(1R,2R)(E)-2-phenyl-cyclopropane-1-carboxylic acid -6.5 5.9385×104 

(1R,2S)(E)-1-amino-2-phenylcyclopropane-1-carboxylic acid -6.4 4.94×104 

(1S,2R)(E)-1-amino-2-phenylcyclopropane-1-carboxylic acid -6.2 3.53×104 

(1S,2S)(E)-2-phenyl-cyclopropane-1-carboxylic acid -6.2 3.53×104 

(1S,2R)(E)-1-chloro-2-phenylcyclopropane-1-carboxylic acid -6.2 3.53×104 

(1R,2S)(E)-1-chloro-2-phenylcyclopropane-1-carboxylic acid -6.0 2.54×104 

Pyrazinoic acid -5.3 7.61×103 

Methylcyclopropane -3.1 0.188×103 

Kb – binding constant; ΔG – Gibbs free energy.

DISCUSSION: 

The previously applied catalytic systems of ATRA 

reactions carry several drawbacks. Particularly, the high-

temperature conditions are necessary for the 

appropriate activity level of the catalyst, which 

completes the conversion. Those conditions initiate the 

range of undesired side reactions (polymerizations, 

dehydrochlorinations, etc.) and as a result, it lowers the 

total yield of desired products. Due to the comparison of 

data collected from the conducted research with the 

literature references, the crucial role of polar solvents 

[dimethylformamide (DMF), dimethyl sulfoxide (DMSO)], 

as the control factor for the activity of Cu(I) complex 

catalyst and reaction intermediates stabilization was 

defined. DMSO significantly increases the catalytic 

complex activity, which reduces the reaction time to 2 

hours. Also, it allows to control the temperature in the 

range from 40 °C up to 60 °C. The mentioned mild 

conditions significantly increase the reaction yields and 

the selectivity of target product formation [34-35].  

The advised optimization of catalytic systems and co-

solvents [Cu(I) salt/amine/DMSO] increases the yields. 

Also, it lowers the temperatures and reduces the reaction 

time. For a preliminary assessment of the bioactivity of 

target compounds, in silico analyses of interaction 

between newly synthesized (E)-1-chloro-2-phenylcy-

clopropane-1-carboxylic acid, such as like the drug-

designed target prospective molecule 1-amino-2-

phenylcyclopropane-1-carboxylic acid with 1-

aminocyclopropane-1-carboxylate oxidase 2 (ACO2) 

enzyme of Arabidopsis thaliana was carried out. For the 

comparison of ethylene biosynthesis inhibitory effects, 

the commercially used analogs were considered for the 

same procedure of in silico analysis.  

The results of molecular docking have 

demonstrated that both 1S,2R, and 1R,2S isoforms of (E)-

1-chloro-2-phenyl-cyclopropane-1-carboxylic acid have

higher values of binding constant 3.53×10-4 and 2.54×10-

4 in difference to widely used methylcyclopropane and 

pyrazinoic acid (also known as pyrazine carboxylic acid) 

with lower value of binding constant: 7.61×10-3 for 

pyrazinoic acid and 0.188×10-3 for methylcyclopropane. 

Probably, it also can be potentially effective against some 

spoilage agents, which have enzymatic activities able to 

deaminase ACC [36-38].  

The elaboration of innovative inhibitors of ethylene 

biosynthesis is very important for the potential control of 

the lifecycle of plants, which has agricultural significance 

for both the food products industry and animal feed 

production (crops, fruits, vegetables). Also, ecologically 

safe polyfunctional inhibitors of ethylene biosynthesis 

are very prospective for the application of these 

compounds as the regulators of spoilage during the 
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storing and transportation of plant-derived agricultural 

production. It is especially important in the case of plant-

derived functional foods preservation during their import 

and export through the borders of countries [39]. Fruits 

and vegetables are one of the most important food 

products, as the main source of the majority of vitamins, 

antioxidants, microelements, etc. for all people. Anyhow 

their consumption by children, and sportsmen (especially 

the Olympic athletes), sigh as like consumption by the 

patients on various types of rehabilitation therapy has 

invaluable importance [40-41]. Thus, the persistence of 

the quality and nutritional amount of these products is a 

very actual problem, including the safe preservation of 

products without the loss of beneficial properties of their 

bioactive compounds [42]. That is extremely important in 

terms of the overwhelming globalization of countries and 

the popularization of various ethnic meals of different 

countries, which are based on fresh fruits and vegetables 

[43].  

Besides, the problem of fresh fruits and vegetables 

transportation in regions with famine problems, natural 

disasters of military conflicts in frames of humanitarian 

support also require the prevention of early premature 

ripening during transportation, which can cause spoilage 

[44-46].  

CONCLUSION: 

An understanding of the structural and functional aspects 

of ACC oxidase and its interaction with inhibitors is crucial 

for the development of effective ethylene biosynthesis 

inhibitors. It’s important because that would be 

potentially applicable in agriculture, horticulture, and 

food production. Thus, taking into consideration all the 

above-mentioned results of preliminary in silico 

experiments, and summarizing the collected data, it 

might be concluded that the study of novel inhibitors of 

ethylene biosynthesis can expand the volume of 

fundamental knowledge about the physiological features 

of the plants. In these regards, that can allow the 

effective control of the lifecycle of various important 

agricultural crops. Besides, it might improve the green 

agricultural practices particularly the postharvest 

management of grains, fruits, and vegetables. All the 

mentioned makes the studied potentially bioactive 

molecules the prospective for furthermore detailed 

studies.  The furthermore detailed in vitro laboratory 

experiments with the various types of plant cultures, 

such as in vivo experiments and the field trials, as the final 

stage of research is planned.  

Abbreviations: ACC, 1-aminocyclopropane-1-carboxylic 

acid; SAM, S-adenosylmethionine; ACS, ACC synthase; 

ACO, ACC oxidase; ATRA, Atom transfer radical addition; 

AVG, 2-aminoethoxyvinyl glycine; DMF, 

dimethylformamide; DMSO, Dimethylsulfoxide; FID, 

Flame Ionization Detector; GC, Gase Chromatography; 

Heteronuclear Multiple Quantum Coherence, HMQC; 

MDA, Malondialdehyde; 1-MCP, 1-methylcyclopropene; 

Met, Methionine; NMR, nuclear magnetic resonance; 

SOD, superoxide dismutase; TLC, Thin-layer 

chromatography; PCCA, trans-2-phenylcyclopropane-1-

carboxylic acid.  
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