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ABSTRACT 

Background: Presently, bacterial cellulose (BC) represents a promising biomaterial for biomedical applications, due to its 

exceptional properties. The capacity of BC to absorb and retain water, facilitating gas exchange, as well as its ability to 

serve as a scaffold for antimicrobial agents, makes it an optimal material for wound dressing that promotes healing and 

prevents infection. 
 

Objective: The objective of the research was to obtain and study BC composites containing antibiotics with controlled 

release and significant antibacterial activity for potential use as wound dressings. 
 

Methods: BC films were obtained by static co-fermentation of Komagataeibacter xylinus MS2530 strains with Pichia 

fermentans MDC 10169 on brewing waste (brewer’s spent yeast (BSY)). The preparation of BC/antibiotic composites was 

achieved by immersing dry films in ceftriaxone and tetracycline solutions for 24 h in a sterile environment. The 

composites' morphology was analyzed by Fourier-transform infrared spectroscopy (FTIR) to evaluate their chemical 

structure and compatibility with ceftriaxone and tetracycline. The loading efficiency and release profile of ceftriaxone 

and tetracycline antibiotics were evaluated using a spectrophotometric method. The antimicrobial activity of BC 
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composites was determined using test cultures Еscherichia coli and Staphylococcus aureus. 
 

Results: The process of co-fermentation using the BSY medium made it possible to produce BC films at a low cost. Based 

on BC films, BC/antibiotic composites with controlled release and significant antibacterial activity were obtained, which 

is a novelty of this study. 
 

Conclusion: The co-fermentation of K. xylinus MS2530 and P. fermentans MDC 10169 on BSY medium simultaneously 

increase the BC yield and reduce fermentation time, leading to a substantial reduction in production costs. BC composites 

obtained by modifying BC films with antibiotics, exhibit significant antibacterial activity against E. coli and S. aureus. 

Therefore, the BC composites obtained have a possible potential for application as dressings for wound surface 

treatment. 
 

Keywords: BC composite, tetracycline, ceftriaxone, controlled release, alternative wound dressing   
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INTRODUCTION 

Bacterial cellulose is one of various promising materials 

for a variety of technological and biomedical applications 

[1-2]. Aerobic bacteria such as Achromobacter, 

Alcaligenes, Aerobacter, Agrobacterium, Azotobacter, 

Komagataeibacter (formerly Gluconacetobacter), 

Pseudomonas, Rhizobium, Sarcina, Dickeya, and 

Rhodobacter produce BC in the form of 

exopolysaccharide [3-5]. Among them, the most widely 

studied bacteria belong to the genus Komagataeibacter, 

which can tolerate a wide range of carbon and nitrogen 

sources [13]. The relatively large variety of 

microorganisms that produce cellulose, as well as the 

wide range of cultivation methods, create excellent 

opportunities for modifying and adjusting the properties 

of the material and finding new areas of application for 

BC.  

BC has a similar chemical composition to plant 

cellulose, but is synthesized in its pure form, without 

lignin, hemicellulose, or pectin [14]. Excellent physical 

properties such as high purity, exceptional mechanical 

strength, crystallinity, nanostructured network, 

significant water retention capacity, biodegradability, 

and biocompatibility make BC a promising biomaterial for 

therapeutic use [1-2, 15-16].  

Presently, the incorporation of BC as a component 

in functional products is of significant pertinence. As is 

well known, functional products are foods and/or their 

components that are not part of the basic diet and have 

a beneficial effect on the health of living organisms by 

providing them with the nutrients necessary for normal 

growth and development. The potential benefits of BC, 

including its ability to enhance food products and deliver 

functional substances as a biologically active carrier, have 

led to a range of considerations for its application in the 

food industry. Research has demonstrated that BC in 

functional foods exerts a regulatory effect on blood 

glucose levels and exhibits a beneficial impact on 

gastrointestinal health [10-11]. 

However, the use of BC is dependent on the 

economic viability of its production processes. Although 

BC is in high demand in various fields, the production 

process remains costly. The cost of synthetic nutrient 

media used for the microbiological synthesis of BC alone 

can account for up to 65% of the total cost of the process 

[4, 21]. Consequently, the expansion of the scale and 

scope of bacterial cellulose usage is contingent upon the 

availability of productive strains that ensure high yields 

of this valuable biotechnological product while allowing 

for the use of more accessible substrates [22-25]. Among 

the approaches for cost-effective BC production are the 

use of waste-based substrates [26-27] from industrial 

and agricultural sources and the co-fermentation of the 

BC producer bacteria with various microorganisms [28-

29]. 

Our previous research demonstrated that co-

fermentation of the highly efficient BC-producing strain 

K. xylinus MS 2530 with the yeast strain P. fermentans led 

to a significant increase in BC yield. Moreover, the use of 

brewing waste instead of expensive classical media 

significantly reduced the cost of synthesized BC [30].  

In recent years, there has been a significant increase 

in research focusing on the BC biopolymer and its 

composites in the domain of biomedicine, particularly in 

the context of wound dressings [31-32]. The primary 

function of traditional wound dressings is to isolate 

wounds from the external environment, thereby 

protecting them from damage. However, the slow self-

healing of wounds and the occurrence of infection during 

the healing process remain unresolved problems. High 

doses of systemic or oral antibiotics are commonly 

prescribed, which can lead to the development of 

bacterial resistance and environmental pollution with 

pharmaceuticals [34]. Consequently, there has been a 

growing interest in the development of alternative 
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methods, such as the treatment of wounds with topical 

antibiotics. 

The unique properties of BC can make it possible to 

create an improved wound dressing that controls wound 

exudates and provide a moist environment during the 

healing process [35]. In addition, wound dressings loaded 

with antibiotics can be used for treatment of infected 

wounds, which significantly decreases the dosage of 

antibiotics compared to intravenous or oral 

administration and may also reduce the development of 

bacterial resistance [36]. The introduction of various 

antimicrobials, anti-inflammatories, antiseptics, and 

other drugs into wound dressings will facilitate the 

treatment of difficult-to-heal wounds [37-39]. Unlike 

traditional gauze and bandage dressings, which cause 

secondary damage when reapplied, the uniqueness of BC 

lies in its ability to prevent adhesion to the wound surface 

while maintaining the necessary moisture balance, 

thereby eliminating secondary damage to the wound 

when changing the dressing. Moreover, BC has a 

microfibrillar structure, which promotes gas exchange 

[40-41]. 

These qualities make it possible to use BC-based 

wound dressings for wounds located in difficult areas of 

the body such as the groin, neck, etc., where it is 

necessary for the dressing to fit snugly to the wound and 

not traumatize the surface during frequent dressing 

changes [42-43]. Studies have shown that BC-based 

wound dressings enriched with antimicrobial agents 

exhibit strong antimicrobial effects and significant 

healing activity [46]. The highly porous structure of BC 

makes it possible to load antimicrobial agents [44].  

To produce BC with antibacterial activity BC films 

are immersed in antibiotic solutions. The most used 

antibiotics are ciprofloxacin, ceftriaxone (CEF), 

tetracycline hydrochloride, amoxicillin, etc. It has been 

shown that ciprofloxacin, amikacin, and ceftriaxone can 

be incorporated into BC to provide bioactivity for 

dressing materials and tissue engineering [43-44, 45-46]. 

The objective of the research was to obtain and 

study BC composites exhibiting controlled release of 

antibiotics and significant antibacterial activity for 

potential use as wound dressings. 

 
 

MATERIALS AND METHODS 

Production and purification of bacterial cellulose film: 

Bacterial cellulose films were synthesized by our mutant 

strain K. xylinus MS2530 co-cultured with P. fermentans 

MDC 10169 in a ratio 1:1 as described in our previous 

work. Co-cultivation was carried out in BSY medium 

under static conditions for 5-7 days at 30 °C, pH 5.5. Then, 

the BC films obtained were first washed with distilled 

water to remove cell debris and medium components. 

Subsequently, the films were immersed in a 0.5% NaOH 

solution at room temperature (25 oC) for 24 hours to 

ensure complete removal of the attached bacterial cells. 

To eliminate alkali residues, the films were subjected to 

repeated washings with deionized water until a neutral 

pH was attained [30]. Then, the purified BC films were 

dried on a silicone substrate at room temperature. 

 

Production of BC composites with antibiotics: In order 

to impart bactericidal properties to bacterial cellulose, BC 

composites with antibacterial drugs were prepared. The 

antibiotics tetracycline (TC) and ceftriaxone (CEF) were 

used (OOO Sintez, Russia). The dried BC films were die-

cut into 1 cm² squares and immersed in antibiotic 

solutions of various concentrations (0.2%, 0.5%, 1%). 

After 24 hours of immersion, the films were removed 

from the antibiotic solutions, washed in distilled water, 

and dried at room temperature [42]. 

TC and CEF contents were calculated according to 

the original concentrations of CEF and TC (C0) and the 

concentration of unloaded CEF and tetracycline 

hydrochloride (C1) quantified using a UV/VIS 
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spectrophotometer (T8DCS, Persee, Beijing, China). TC 

was measured at a wavelength of 357 nm, while CEF was 

measured at 304 nm. 

Antibiotics contents (W) in the composite films 

were determined with the following equation: 

 

𝑾 = (𝑪𝟎 − 𝑪𝟏) ×
𝑽

𝑨
, 

 

where V ‒ the volume of total CEF or TC equal to 10 mL 

in this calculation, and A ‒ the area of BC/CEF or BC/TC 

composite films. 

 

In vitro release of antibiotics from BC composites: 

Antibiotic release experiments were conducted in 50 ml 

PBS at pH 7.0 and 37 °C. Samples of 1 ml were taken at 

regular intervals (1 h) for measurement using a UV/VIS 

spectrophotometer. 

 

Fourier transform infrared (FTIR) spectroscopy: The 

functional groups and chemical bonds of BC and 

BC/antibiotic composites were studied by IRTracer-100 

FTIR spectrometer (Shimadzu, Kyoto, Japan) equipped 

with a KBr prism in single reflection mode in the range of 

500–4000 cm⁻¹ with a resolution of 4 cm⁻¹. 

 

In vitro antibacterial tests: The antibacterial activity of 

BC-antibiotic composites was examined on the test E. coli 

ATCC 25922 and S. aureus ATCC 25923, using the disk 

diffusion method. The bacterial suspension with a final 

concentration of 0.5 McFarland's standard density 

(equivalent to 1.5 x 108 CFU/mL) was added to Petri 

dishes (with a diameter of 90 mm) containing 20 ml of the 

LB agar. Subsequently, the dishes were then left to 

solidify at room temperature. Then BC composite 1 cm² 

squares, containing tested concentrations of antibiotics, 

were placed on the agar surface. The BC square, devoid 

of any antibiotic treatment, was used as a control. The 

Petri dishes were incubated at a constant temperature of 

35°C for a duration of 18-24 hours. The antibacterial 

activity was evaluated by measuring the diameter of the 

growth inhibition zones [47]. 

 

Statistical analysis: All experiments were performed in 

triplicate, and results were expressed as the mean ± 

standard deviation. The data were analyzed using a One-

way ANOVA with RStudio software (version 1.4.1106) 

employing Student’s t-test and Dunnett’s test. Statistical 

significance was defined as p<0.05. 

 
RESULTS AND DISCUSSION 

The BC films obtained as a result of co-cultivation were 

analyzed using scanning electron microscopy (SEM) and 

FTIR methods. Certain physical properties (Young's 

modulus, tensile strength, elasticity, etc.) were also 

investigated. The results of previous studies 

demonstrated the effectiveness of the co-cultivation 

method for increasing the production of BC with optimal 

mechanical and chemical characteristics [30]. 

 

Table 1. Antibiotic contents in BC composites membrane 
 

 

Samples Thickness of wet BC (mm) Antibiotic content (mg/dm2) 

BC/CEF0,2 1.967 ± 0.04 2.27 ± 0.09 

BC/CEF0.5 1.971 ± 0.02 6.15 ± 0.08 

BC/CEF1 1.973 ± 0.03 9.34 ± 0.12 

BC/TC0,2 1.970 ± 0.04 2.17 ± 0.11 

BC/TC0.5 1.972 ± 0.04 7.15 ± 0.07 

BC/TC1 1.973 ± 0.02 10.04 ± 0.08 
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Obtaining BC/antibiotic composites: Composites 

obtained by immersing dry BC films in solutions of CEF 

and TC antibiotics (0.2%, 0.5%, and 1.0%) were 

designated BC/CEF0.2, BC/CEF0.5, BC/CEF1, BC/TC0.2, 

BC/TC0.5, BC/TC1, respectively.  

 

Quantitative determination of antibiotics in BC 

composites: TC and CEF contents in BC composites were 

determined using a UV/VIS spectrophotometer and the 

results were presented in Table 1. The data from the 

table demonstrate a direct correlation between the 

antibiotic loading in composite membranes and the initial 

antibiotic concentration. The large surface area and 

porosity of BC, as well as its water-holding capacity, lead 

to higher drug loading efficiency [48]. 

 

FTIR spectroscopy analysis: The morphology of the 

prepared composites was analyzed by FTIR to analyze 

their chemical structure and compatibility with 

ceftriaxone and tetracycline. As shown in Figure 1, the IR 

spectra of BC/CEF and BC/TC composite membranes 

have the same peaks with pure BC film (without 

antibiotic). The stretching vibration of O–H bond of 

hydroxyl group of cellulose was detected at 3200–3300 

cm⁻¹. This finding is consistent with results reported by 

Volova et al. (2022) and Feng et al. (2024) [35, 41]. The 

absorption band centered at 2854–2885 cm⁻¹ 

corresponds to the stretching vibrations of the C–H bond, 

which is consistent with the findings published by Bai et 

al. (2023) [43]. The band at 1157 cm⁻¹ is due to the 

stretching vibrations of the C–O bond, and the bands in 

the range of 1026–1049 cm⁻¹ are due to the stretching 

vibrations of the C–O–C pyranose ring, which is due to the 

structure of cellulose [44]. After the introduction of 

ceftriaxone, the BC/CEF composite showed new peaks in 

the range of 3340–3271 cm⁻¹, which corresponds to the 

stretching vibrations of the amino group NH2, and at 

1728 cm−1, which corresponds to the stretching 

vibrations of the C=C bond [45-46]. The BC-TC composite 

showed a peak at 1535 cm 1, which corresponded to the 

deformation of the NH2 amino group of tetracycline [47]. 

 

 
 

                                         Figure 1. FTIR analysis of BC, BC/CEF and BC/TC composite membranes  
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Antibacterial activity: Two antibiotics, ceftriaxone and 

tetracycline, were selected to impart antibacterial 

properties. The selection of these antibiotics was 

predicated on a number of factors. Ceftriaxone, classified 

as a third-generation antibiotic, demonstrates a broad 

spectrum of activity against most Gram-negative and 

Gram-positive microbes. Ceftriaxone has been shown to 

inhibit the synthesis of peptidoglycan, the structural 

component of microbial cell walls. Tetracycline is a 

broad-spectrum antibiotic suitable for both oral and 

topical use. Tetracycline has been shown to have a 

bacteriostatic effect, which is achieved through the 

suppression of protein synthesis. 

The antibacterial activity effect of BC/antibiotic 

composites was tested on cultures E. coli ATCC 25922 

and S. aureus ATCC 25923, using the disk diffusion 

method. As seen in Figure 2 and Figure 3, the obtained 

BC/TC and BC/CEF composites have pronounced 

antibacterial activity. The largest inhibition zone was 

observed for the BC/CEF composite in both test 

cultures. The inhibition zones at different 

concentrations of CEF did not differ significantly, 

showing that the lower concentrations of the antibiotic 

are also effective.  

Figure 2. Antibacterial activity of BC/TC composite in the cases of S. aureus (a) and E. coli (b), and BC/CEF composite in the 

cases of S. aureus (c) and E. coli (d). p<0.05 

C — BC as a control; values 0.2, 0.5, 1.0 — tested concentrations of antibiotics in percentage 

       Figure 3. Comparative analysis of inhibition zones of BC composites. p<0.05 
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The strongest inhibition of BC/TC was observed on 

S. aureus; on the E. coli culture, the zones were smaller, 

which may be due to the fact that E. coli is a Gram-

negative bacterium with a more complex cytoplasmic 

membrane structure which prevents TC from penetrating 

into the periplasmic space of the cell. 

With regard to the release of antibiotics from BC 

composites, which demonstrate maximal activity within 

the initial 10 hours, our research has indicated that 

ceftriaxone exhibits a more rapid release profile (61.5% 

within 72 hours) in comparison to tetracycline (48.5% 

within 72 hours). The difference in the rate of antibiotic 

release may be related to the strength of adhesion, which 

depends on the charge of the antibiotic, since BC has a 

negative charge. As a result of electrostatic interaction 

between BC and positively charged tetracycline, the 

release of the antibiotic is slowed down, while the 

negative charge of ceftriaxone, on the contrary, 

promotes faster release of the antibiotic from BC. Our 

results correlate with the results obtained by Volova et 

al. (2018), Breijaert et al. (2025) [47-48]. 

Thus, the novelty of this study lies in obtaining 

BC/antibiotic composites with controlled release and 

significant antibacterial activity. These composites are 

based on BC obtained from the processing of brewing 

waste, which can ensure cost-effective production in 

accordance with the principles of a green sustainable 

economy. 

 

CONCLUSION 

The current study showed that BC films obtained by co-

cultivation of K. xylinus MS2530 with P. fermentans MDC 

10169 on brewing waste medium can be used as carriers 

of antibiotics, such as tetracycline and ceftriaxone, and 

exhibit significant antibacterial effects against S. aureus 

and E.coli. Consequently, our results show that BC 

composites filled with antibiotics can be used as wound 

dressings with antimicrobial action. 

List of Abbreviations: BC: bacterial cellulose, BSY: 

brewing waste, CFU: colony forming unit, SEM: scanning 

electron microscopy, FTIR: Fourier-transform infrared 

spectroscopy, PBS: phosphate-buffered saline, CEF: 

ceftriaxone, TC: tetracycline, BC/CEF: ceftriaxone loaded 

bacterial cellulose, lBC/TC: tetracycline loaded bacterial 

cellulose 
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