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ABSTRACT 

Background:  Diabetes mellitus causes changes in the structural or functional anatomy of the heart. A high blood 

glucose level and oxidative stress are key factors in diabetic cardiac damage. Ferulic acid (4-hydroxy-3-methoxy 

cinnamic acid) is a biologically active compound in many functional foods like fruits, vegetables, and medicinal 

herbs. It belongs to the group of cinnamic acid derivatives. 

Objective: In the present study, we investigated the effects of Ferulic acid (FA) on Streptozotocin-induced diabetic 

cardiac damage in male Sprague Dawley rats. 

Materials and methods:  A total of 30 male Sprague-Dawley rats were divided into five groups of six each. 

Diabetes was induced by a single intraperitoneal injection of Streptozotocin (STZ) (40 mg/kg body weight). Group 

I consisted of normal rats (N); group II consisted of normal rats treated with FA (N+FA); group III consisted of STZ-

induced diabetic rats (D), and groups IV and V consisted of STZ-induced diabetic rats treated with FA at a dose of 

50 mg/kg body weight and glibenclamide at a dose of 5 mg/kg body weight respectively (N+FA and N+G) for 60 

days. Rats were sacrificed after the treatment period, and blood and heart tissue were collected for analysis. 
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Results:  STZ injection significantly increased blood glucose, HbA1c, cardiac marker enzymes LDH, CK-MB, and 

oxidative stress in heart tissue. The oral administration of FA to diabetic rats for 60 days significantly improved 

diabetic markers, oxidative stress, and cardiac markers. 

Conclusion: The present study indicated that FA affords cardioprotective effect in diabetic rats, and this 

protection may be due in part to the attenuation of oxidative stress. 

Keywords: ferulic acid, streptozotocin, diabetes, cardiac damage, oxidative stress 
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INTRODUCTION 

Diabetes mellitus is a metabolic disorder of multiple 

etiologies characterized by chronic hyperglycemia 

with disturbances in carbohydrate, protein, and lipid 

metabolism resulting from defects in insulin secretion 

or action [1]. The number of people living with 

diabetes worldwide in 2019 is approximately 463 

million. By 2030, it will reach 10.2% (578 million), and 

by 2045, it will reach 10.9% (700 million) [2]. Diabetic 

patients are significantly more likely to suffer from 

micro and macrovascular disease and cardiovascular 

diseases, such as ischemic heart disease, stroke, and 

heart failure, than non-diabetic patients [3]. The 

majority of diabetes-related morbidity and mortality 

is caused by cardiovascular complications. 

Diabetic-related cardiac dysfunctions 

are directly connected with redox imbalance and 

oxidative stress. Chronic elevations of blood glucose, 

the most defining clinical sign of diabetes, lead to an 

increase in reactive oxygen species (ROS) derived 
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from glucose autoxidation and glycosylation. This 

causes long-term and acute structural and functional 

changes in macromolecules that may impair cellular 

functioning, cause cell death, or damage organs [4]. 

Studies have shown that plants possess antidiabetic 

and antioxidant properties that can reduce the 

symptoms of diabetics and the effects of oxidative 

stress [5]. In this regard, antioxidant therapies based 

on plant bioactive constituents are getting more 

attention now against the progression of diabetic 

heart complications. 

Bioactive compounds are substances found in 

foods with health benefits, including antioxidants, 

anti-inflammatory properties, antifungal properties, 

and various preventative properties [6]. Ferulic acid 

(FA) or 4-hydroxy-3-methoxycinnamic acid (Figure 1) 

is a bioactive compound found in many functional 

foods that have been linked to a wide range of health 

benefits. According to the Functional Food Centre, 

functional foods are defined as "Natural or processed 

foods that contain known or unknown biologically 

active compounds; which is effective, and non-toxic 

dose, provide a clinically proven and documented 

health benefit for the prevention, management, or 

treatment of chronic diseases [7]. FA is rich in cereal 

seeds, wheat, rye, oats, barley, whole grains, spinach, 

parsley, grapes, rhubarb, etc [8]. FA has low toxicity 

and a wide range of physiological effects (anti-

inflammatory, antioxidant, antimicrobial activity, 

anticancer, and antidiabetic activity) and is widely 

used in the pharmaceutical, food, and cosmetics 

industries [9]. FA is a free radical scavenger but also 

an inhibitor of enzymes that catalyse free radical 

generation and an enhancer of scavenger enzyme 

activity [10].  According to literature, FA has 

cardioprotective effect on diabetic hearts [11]. Based 

on preliminarily reported antioxidant and 

hypoglycemic properties of this molecule in STZ-

induced diabetic rats [12–14], we designed the 

present study to evaluate its potential therapeutic 

role in ameliorating STZ-induced and oxidative stress 

mediated cardiac complications in Sprague Dawley 

rats. 

Figure 1. Structure of Ferulic acid 

MATERIALS AND METHODS 

Chemicals: All the chemicals used in this study were 

of analytical grade and purchased from Sigma–Aldrich 

(St. Louis, MO), Hi-Media (Mumbai, India) and Sisco 

Research Laboratories (Mumbai, India). 

Induction of experimental diabetes in rats: 30 Male 

Sprague Dawley rats (170-180 g) were bred in the 

Animal House, Department of Biochemistry, 

University of Kerala.  Intraperitoneal injection of STZ 

in pH 4.5 citrate buffer at a dose of 40 mg/kg was used 

to induce diabetes in rats. To combat the drug-

induced hypoglycemia, rats injected with STZ were 

given an overnight glucose solution of 20%. Rats with 

fasting plasma glucose levels greater than 250 mg/dl 

were considered diabetic and included in the study. 

All rats were housed in clean, sterile, polypropylene 

cages under standard vivarium conditions (12 h 
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light/dark cycles) with free access to a standard 

laboratory pellet diet (Hindustan Lever Ltd., 

Bangalore, India) and water. This study was approved 

by the Institutional Animal Ethics Committee (Ethical 

sanction number: (IAEC-3-KU-03/2018-19-BCH-SM 

(43)). 

Experimental design: Rats were divided into five 

groups, with six rats in each group. Group I was 

normal rats (N); group II consisted of normal rats 

treated with FA (N+FA); group III with STZ-induced 

diabetic control rats (D), groups IV and V consisted of 

STZ-induced diabetic rats treated with FA at doses 

50 mg/kg body weight [15] and glibenclamide at a 

dose of 5 mg/kg body weight [16] respectively (N+FA 

and N+G). The daily intragastric treatments using the 

fresh suspension of FA and glibenclamide were 

continued for 60 days. After the treatment period, the 

rats were fasted overnight, sacrificed, blood and 

heart tissue was collected in ice-cold containers for 

various estimations. 

Biochemical studies: Blood glucose was estimated by 

the glucose oxidase method [17]. Glycated 

hemoglobin by HbA1c kit (Beacon Diagnostics Pvt Ltd) 

and Plasma insulin by ELISA kit (DRG Diagnostics, 

Marburg, Germany). The cardiac hypertrophic index 

is represented as the heart weight/body weight ratio. 

At the end of the study, each animal's heart weight 

(mg)/body weight (gm) weight ratio was calculated. 

The antioxidant status in heart tissue was determined 

from superoxide dismutase (SOD) [18], catalase (CAT) 

[19], glutathione peroxidase (GPx) and glutathione 

reductase (GRd) activity [20].  Estimation of serum 

lactate dehydrogenase (LDH) and creatine kinase 

myocardial band (CK-MB) was done as per the 

manufacturer instructions in protocol of kit from 

AGAPPE diagnostic Pvt.Ltd. 

Statistical Analysis: Statistical analysis was done 

using the statistical package SPSS/PC+, Version 17 

(SPSS Inc. Chicago, IL, USA), and GraphPad Prism 7.0. 

The data analyses for the single group were done by 

one-way analysis and grouped data by two-way 

analysis of variance (ANOVA). All the results were 

expressed as mean value ± SD (n = 6). 'P' values of 0.05 

or less were considered significant. 

RESULTS 

Blood glucose and HbA1c: Figure 2A show that 

experimentally induced diabetic rats showed severe 

hyperglycemia with increased glucose levels 

estimated (371.20 ± 3.58 mg/dl). The 

supplementation of FA to the diabetic rats 

considerably improved the condition. Oral 

administration of FA at a dose of 50 mg/kg body 

weight for 60 days resulted in a significant (P ≤ 0.05) 

fall in glucose levels (178.97 ± 5.1 mg/dl) at the end of 

the treatment period. Glycated hemoglobin level was 

significantly increased (13.93 ± 1.45 %) in diabetic 

control rats compared to normal groups. The 

administration of FA reduced the levels of glycated 

hemoglobin in diabetic control rats to 7.65 ± 0.70 %. 

The result was shown in figure 2B. The effect of FA 

was comparable with the standard drug 

glibenclamide.
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Figure 2. (A) Blood glucose (B) Glycated hemoglobin: Values are expressed as mean ± SD (n=6). 'a' indicates values were 

significantly different from N, D is compared with D+FA and DG ('b' indicates values were significantly different from D) and D+FA 

is compared with D+G ('c' indicates values were significantly different from D+G). Significance accepted at p ≤ 0.05. Abbreviations: 

N-Normal rats, N+FA- Normal rats treated with FA, D-Diabetic control rats, D+FA-Diabetic rats treated with FA, D+G- Diabetic rats

treated with glibenclamide. 

Cardiac hypertrophic index: Figure 3 represents the 

cardiac hypertrophic index in experimental animals 

calculated using the heart weight and body weight 

ratio of rats at the end of the study. There was a 

significant increase (P ≤ 0.05) in the cardiac 

hypertrophic index in the diabetic group (11.08 ± 1.02 

mg/g) as compared to normal group (4.84 ± 0.84 

mg/g), which was significantly decreased ((P ≤ 0.05) 

by glibenclamide and FA respectively treated groups 

(6.94 ±.60 and 7.00±0.84 mg/g) as compared with 

diabetic group. 

Figure 3. cardiac hypertrophic index: Values are expressed as mean ± SD (n=6). 'a' indicates values were significantly different 

from N, D is compared with D+FA and DG ('b' indicates values were significantly different from D). S ignificance accepted at p ≤ 

0.05. Abbreviations: N-Normal rats, N+FA- Normal rats treated with FA, D-Diabetic control rats, D+FA-Diabetic rats treated with 

FA, D+G- Diabetic rats treated with glibenclamide. 

LDH and CK-MB activity: Table 1 represents that in 

the diabetic group, there was a significant increase (P 

≤ 0.05) in serum LDH levels as compared to normal 

group. Glibenclamide and FA treated groups showed 

significant decrease (P ≤ 0.05) respectively in serum 

LDH levels as compared with the diabetic group. A 

significant increase (P ≤ 0.05) in serum CK-MB levels 

were found in diabetic group as compared to the 

normal group. D+FA groups showed a significant 

decrease in serum CK-MB level compared to the 

diabetic group. 
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Table 1. Cardiac marker enzymes 

GROUPS LDH 

(U/L) 

CK-MB  

(U/L) 

N 56.86 ± 0.87 132.93 ± 3.21 

N+FA 56.51 ± 1.49 131.66 ± 2.26 

D 111.78 ± 1.81a 219.21 ± 1.54a

D+FA 76.49 ± 1.89b 163.29 ± 1.95b

D+G 71.83 ± 1.40b,c 154.47 ± 1.65b,c

Values are expressed as mean ± SD (n=6). 'a' indicates values were significantly different from N, D is compared with D+FA and 

DG ('b' indicates values were significantly different from D) and D+FA is compared with D+G ('c' indicates values were significantly 

different from D+G). Significance accepted at p ≤ 0.05. Abbreviations: N-Normal rats, N+FA- Normal rats treated with FA, D-

Diabetic control rats, D+FA-Diabetic rats treated with FA, D+G- Diabetic rats treated with glibenclamide. 

Antioxidant enzyme activities in heart tissue: 

Catalase and SOD activity was significantly (P ≤ 0.05) 

reduced in the heart tissue of diabetic rats compared 

to normal rats. Significant enhancement (P ≤ 0.05) in 

SOD activity and catalase activity was observed in FA 

(50 mg/kg body weight) treated animals. The activity 

of GPx and GRd in heart tissue decreased significantly 

(P ≤ 0.05) in diabetic rats compared to non-diabetic 

rats. Significant enhancement (P ≤ 0.05) in GPx and 

GRd activity was found in diabetic rats treated with 

FA. The effect of FA treatment was compared with the 

standard drug glibenclamide. The results are 

represented in table 2.

Table 2.  Antioxidant enzyme activities in heart tissue 

     GROUPS CAT (10-3U/mg protein) GPx (U/mg protein) GRd (U/mg protein) SOD (U/mg protein) 

N 6.79 ± 0.29 26.68 ± 0.52 20.4 ± 2.04 2.07 ± 0.49 

N+FA 6.90 ± 0.19 27.12 ± 0.51 23.1 ± 2.01 2.14 ± 0.39 

D 2.31 ± 0.17 a 12.20 ± 1.10a 13.4 ± 1.20a 0.43 ± 0.10a 

D+FA 4.27 ± 0.87b 16.23 ± 0.51b 17.82± 1.40b 0.83 ± 0.03b 

D+G 4.41 ± 0.13 b, c 15.92 ± 0.90 b 15.82± 1.25b,c 0.87 ± 0.04b,c 

Values are expressed as mean ± SD (n=6). 'a' indicates values were significantly different from N, D is compared with D+FA and 

DG ('b' indicates values were significantly different from D) and D+FA is compared with D+G ('c' indicates values were significantly 

different from D+G). Significance accepted at p ≤ 0.05. Abbreviations: N-Normal rats, N+FA- Normal rats treated with FA, D-

Diabetic control rats, D+FA-Diabetic rats treated with FA, D+G- Diabetic rats treated with glibenclamide. 
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Reduced Glutathione content (GSH) in heart 

tissue: The concentration of non-enzymatic 

antioxidant-GSH in heart tissue is shown in figure 4. 

A significant decline (P ≤ 0.05) was observed in the 

concentration of GSH in diabetic control rats (35.55 

± 1.13 Mm/100g of tissue) compared to the normal 

control rats (75.92 ± 1.42 Mm/100g of tissue). In 

contrast, GSH concentration was significantly 

enhanced after treatment with FA (51.85 ± 1.68 

Mm/100g of tissue) or glibenclamide (51.71 ± 1.31 

Mm/100g of tissue) in the heart tissue of diabetic 

rats.  

Figure 4. Reduced Glutathione content (GSH) in heart tissue: Values are expressed as mean ± SD (n=6). 'a' indicates values were 

significantly different from N, D is compared with D+FA and DG ('b' indicates values were significantly different from D). 

Significance accepted at p ≤ 0.05. Abbreviations: N-Normal rats, N+FA- Normal rats treated with FA, D-Diabetic control rats, D+FA-

Diabetic rats treated with FA, D+G- Diabetic rats treated with glibenclamide.

DISCUSSION 

Cardiovascular problem is one of the most common 

complications of diabetes. Diabetes-induced 

oxidative stress has been implicated in the 

progression of the pathogenesis of cardiovascular 

complications [3]. There is a growing interest in 

antidiabetic remedies from plants sources because of 

their fewer side effects and low cost. In the present 

study, the protective effects of the phenolic 

phytochemical compound FA in the heart tissue of 

STZ-induced diabetic rats were 

determined. Tocompare the results of the study, 

glibenclamide was used as a standard antidiabetic 

drug. 

STZ is one of the most common substances used 

to cause diabetes mellitus in experimental animals 

[21]. The destruction of beta cells by STZ injection and 

reduction of insulin production create diabetes. Here, 

male Sprague Dawley rats were induced diabetes 

using a 40 mg/kg dose of STZ injection, resulting in 

hyperglycemia with increased glucose and HbA1c 

levels in rats. These observations generally agree with 

other investigations on STZ-induced experimental 

diabetes [22–24]. A 60-day FA supplementation 

protected diabetic rats from this condition by 

regulating glucose levels. HbA1c is a reliable indicator 

of glycemic control in diabetes mellitus and is 

considered an indicator of diabetes prognosis. The 

administration of FA and glibenclamide reduced the 

levels of HbA1c in diabetic rats, showing its 

hypoglycemic potential. Several studies showed the 

hypoglycemic efficacy of FA in diabetic rats in  
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agreement with our results [25–27]. 

The heart-to-body ratio of rats during the 

experimental period represented the cardiac 

hypertrophic mass index here. The ratio may be 

greater in patients with hypertension and diabetes 

mellitus than those without diabetes mellitus [28]. In 

our study not a significant heart weight change was 

observed in diabetic animals while cardiac 

hypertrophic index was raised significantly in diabetic 

rats. 60 days of treatment with FA and glibenclamide 

showed a significant decrease in the cardiac 

hypertrophic index, showing its protection over 

diabetes-induced heart damage. 

Myocardium contains high concentrations of CK-

MB, one of the isoforms of creatine kinase. The 

amount of lactate dehydrogenase (LDH) and CK-MB 

level is an index for identifying cell injury and 

membrane integrity in cardiac tissue. In the process 

of cell membrane destruction, these enzymes leak 

out of cells. Thus, the level indicates the degree of 

injury and cell necrosis[29]. It has been previously 

reported that serum LDH and CK-MB activity increase 

with cardiomyopathy conditions [30]. In diabetic 

patients, CK-MB and LDH levels have been found to 

increase, possibly serving as markers for 

cardiovascular risk and cardiac muscular damage. In 

the present study, STZ-induced diabetes resulted in 

an increased serum LDH and CK-MB activity may be 

due to cardiac injury, whereas FA treatment 

decreased serum levels of LDH and CK-MB in diabetic 

rats. This suggests the effective cardioprotection 

activity of FA against diabetes-induced toxicity, which 

is in agreement with the previous findings [31]. 

Diabetes-associated heart damage and 

eventually cardiomyopathy are caused by increased 

production of ROS in the diabetic heart [3]. Increased 

ROS in cardiac tissue amplifies hyperglycemia and 

increases the formation of glucose-derived advanced 

glycation end products, which may contribute to 

developing cardiac complications in diabetes. 

Increased ROS generation may activate apoptotic 

signaling pathways, resulting in cell death, promoting 

abnormal cardiac remodeling, and contributing to the 

characteristic morphological and functional 

abnormalities [32]. The strategies that reduce ROS or 

enhance myocardial antioxidant defence mechanisms 

by increasing the activity of antioxidant enzymes such 

as SOD, catalase, GPx or GRd might be therapeutically 

effective in improving myocardial function in diabetes 

mellitus. Treatment with FA and glibenclamide 

increased the levels of heart tissue antioxidant 

enzyme levels in diabetic rats. FA is widely reported 

to have strong antioxidant properties. A complex 

antioxidant mechanism underlies the action of FA 

primarily through the inhibition of ROS and nitrogen 

oxidation and the neutralization of free radicals. 

Additionally, FA can chelate protonated metal 

ions, such as Cu(II) or Fe(II), inhibit enzymes that 

generate free radicals, and enhances free radical 

scavenger enzyme activity, making it an excellent 

scavenger of free radicals [33, 34]. In this way, the 

antioxidant nature of FA can effectively prevent 

diabetes-induced oxidative damage to the heart. In 

our study, an increase in antioxidant enzymes level 

and reduced glutathione content in the heart was 

observed after treatment with FA in diabetic animals, 

which can effectively reverse the STZ-induced 

diabetic complications in heart. 

CONCLUSION 

This study demonstrated that Ferulic acid (50 mg/kg 

body weight) decreased glucose and glycated  

hemoglobin levels and effectively protected the heart 

tissues of STZ induced diabetic rats from oxidative 
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stress damage by increasing both enzymatic and non-

enzymatic antioxidant defence. Together, these 

findings suggest that dietary Ferulic acid may have 

health benefits in the relief of oxidative stress and 

attenuation of the hyperglycemic response 

associated with diabetes-induced cardiac problems. 

List of Abbreviations: ROS: Reactive oxygen species, 

HbA1c: Glycated hemoglobin, SOD: Superoxide 

dismutase, GRd: Glutathione reductase, GPx: 

Glutathione peroxidase, GSH: Reduced glutathione, 

STZ: Streptozotocin, FA: Ferulic acid, LDH: lactate 

dehydrogenase, CK-MB: creatine kinase-MB. 
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