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ABSTRACT 

Diabetes mellitus is a group of metabolic conditions characterized by elevated levels of blood glucose and it has 

become a very common disease among individuals in the world at large today. The rate of incidence of diabetes, even 

in Nigeria, has risen drastically over the years. Different forms of treatment have been tried and used over the years, 

including insulin therapy and the use of various medications, although some of these medications are accompanied by 

side effects. Diabetes mellitus and related conditions have been stated to be treated effectively with several natural 

products. Functional foods are being utilized to prevent and manage diabetes mellitus because they contain 

antioxidant, anti-inflammatory, and insulin sensitivity potentials. Since oxidative stress, inflammation, and insulin 

resistance are associated with this disease, these foods can be effective in managing the disease. This review aimed to 

explain the modes of action of some of these functional foods in managing diabetes. 
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INTRODUCTION 

Diabetes Mellitus occurs as a progressive disorder of the 

body’s metabolism and is characterized mainly by 

conditions ranging from chronic hyperglycemia to 

defects related to the secretion of insulin, its actions, or 

even both [1]. It is characterized by changes in lipid, 

protein, and carbohydrate metabolism. There are 

different symptoms of the disease, and the severity of 

the symptoms is mainly due to the diabetes type and 

duration. If not managed or treated properly, diabetes 

results in dysfunction of body organs and systems and 

can ultimately lead to the death of the individual.  

Cardiovascular complications, retinopathy, neuropathy, 

and nephropathy are some complications related to 

diabetes mellitus [2].  

Diabetic cases have been described as the 

epidemic of the century, due to their high incidence and 

prevalence rates with an increased population of 

diabetic individuals in 1980–2014 from 108 million to 

422 million respectively. In 2012, the mortality rate of 

2.2 million patients was linked to increased blood sugar 

levels, and in 2016, diabetes mellitus caused the deaths 

of approximately 1.6 million people. Also in 2016, 

diabetes was estimated as the seventh major cause of 

mortality by the World Health Organization [3].  

Different hypoglycemic (glucose-reducing) 

drugs like sulfonylureas and biguanides are utilized in 

diabetes treatment to restore the inadequate 

production of insulin and insulin resistance, although 

over time some of these drugs have been discovered to 

have side effects [4]. Alternatives such as medicinal 

foods, herbal plants, food supplements, and 

nutraceuticals that have minimal or no side effects 

are therefore being considered in diabetes 

management. Therefore, this review attempts to 

discover more about the modes of action of these 

alternatives in the management and treatment 

of diabetes. 
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Diabetes Mellitus: Type 1 diabetes, also referred to as 

insulin-dependent diabetes is an autoimmune disease 

that accounts for about 10% of diabetic cases [5]. It is 

caused by insufficient insulin secretion by the pancreatic 

beta cells leading to insulin deficiency [6]. It is due to 

genetic factors and is associated with endocrine and 

metabolic conditions [7]. T1DM also occurs in adults 

despite being more prevalent among juveniles [8]. Long-

term complications include neuropathy, nephropathy, 

and coronary heart disease [9].  

Type 2 diabetes mellitus (T2DM), also known as 

non-insulin dependent diabetes mellitus, is due to the 

dysfunction of the beta cell of the islet of Langerhans 

and reduction in insulin sensitivity of target tissues [2]. 

T2DM is a complex disease with lifestyle, epigenetics, 

and genetics playing different roles in its pathogenesis. 

The genetic expressions involved in the production of 

insulin from the β-cells and insulin sensitivity in the 

tissues are also affected. Oxidative stress disrupts 

insulin-induced glucose uptake and insulin signaling in 

skeletal muscle, fat tissues, and liver resulting in insulin 

resistance. Hepatic insulin resistance stimulates glucose 

production from non-carbohydrate sources, leading to 

excessive hyperglycemia which causes more oxidative 

stress-induced impairment and T2DM complications 

(Figure 1) [10]. Insulin resistance affects serine protein 

kinase B/Phosphatidylinosito-3-kinase (Akt/P13K), 

peroxisome proliferator-activated receptor (PPAR), 

AMP-related protein kinase (AMPK) which are proteins 

or genes involved in the insulin signaling pathway [11]. 

Figure 1: Etiology of Type 2 Diabetes Mellitus [12]. 
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Functional Foods: According to the Functional Food 

Center (FFC), “functional foods are defined as natural or  

processed foods containing known or unknown 

biologically active compounds, which when consumed in 

defined, effective non-toxic quantities provide a 

clinically established and recognized health benefit for 

the prevention, management or treatment of chronic 

diseases” [13]. Functional foods can either be natural 

(fruits, vegetables, nuts, legumes, vitamins, minerals, 

and seafood) [14] or processed (fortified food products) 

[15]. They can either be of a plant (rice, soy, rice, 

flaxseed, garlic) or animal origin (fish, dairy products) 

[16] or value-added foods [17]. Bioactive compounds

are the main effective constituents of functional foods. 

Some of these bioactive compounds include prebiotics, 

probiotics, synbiotics, polyunsaturated fatty acids, 

vitamins, essential fatty acids, dietary minerals, 

phytochemicals, antioxidants, and phytosterols [18-19]. 

Asides from their nutritional values, they may lower the 

risks of cardiovascular-related diseases, dyslipidemia, 

T2DM, and cancer [20-21]. Consistent consumption of 

functional foods has been reported to improve oxidative 

stress, cholesterol levels, and inflammation, and reduce 

insulin resistance while improving insulin sensitivity 

which is integral in preventing, managing, and treating 

T2DM [22]. Bioactive peptides from functional foods 

have been discovered to inhibit enzymes involved in 

digesting carbohydrates (α-glucosidase and α-amylase), 

reduce glucose absorption in the small intestine and 

improve insulin secretion [23]. 

MECHANISMS OF ACTION OF FUNCTIONAL FOODS IN 

DIABETES MANAGEMENT  

Phytochemicals: Phenolic compounds in blackberries 

stimulate glucose uptake by HepG2 cells and increase 

cellular glycogen content [24]. Adequate maintenance 

of mitochondrial membrane potential is necessary for 

normal cell functioning because mitochondria are 

crucial for controlling cellular ROS [25]. The 

pathogenesis of insulin resistance and diabetes-related 

complications may be influenced by mitochondrial 

dysfunction [26]. Blackberries therefore cause increased 

levels of cellular glutathione and improve mitochondrial 

membrane potential, indicating that these compounds 

perform their antidiabetic activity via the antioxidant 

properties they possess [24].  

Flavonoids found in diverse fruits, nuts, grains, 

chocolate, and plants possess anti-diabetic potentials. 

They regulate insulin secretion, glucose uptake, and 

blood glucose levels [27]. Flavonoids in hibiscus petals 

reduced high glucose levels by promoting insulin release 

from the pancreatic β-cells. It also down-regulated 

inflammatory cytokines expressions by reducing NF-κB 

nuclear translocation and up-regulated foxO-1, MafA, 

and Ucn-3 expressions in the β-cell [28]. Flavonoids in 

the citrus genus increased GPx, SOD, and CAT levels; 

expressions of Akt, PPARγ, and P13K while reducing 

PTP1B expression. Modulation in IL-6, IL-2, NF-ΚB, IL-1β, 

and TNF-α expressions were also observed. All these 

improved glucose absorption in the peripheral cells by 

reducing the levels of inflammatory biomarkers linked 

with the pathogenesis and development of diabetes-

related complications [29]. 

Quercetin, a flavonoid derived from berries, 

onions, apples, seeds, flowers, and leaves has 

antihyperglycemic activity [30]. Quercetin regulated the 

mitogen-activated protein kinase (MAPK) insulin-

dependent pathway, thus enhancing the uptake of 

glucose [31]. It increased the level of glutathione 

peroxidase, regulated NF-κB signaling, and prevented 

pancreatic β-cells death [32]. In diabetic rats, quercetin 

reduced malondialdehyde (MDA) and increased liver 

GPx activity [33]. Quercetin from F.racemosa stem bark 

reduced glucose levels, and increased CAT, SOD, and 

GSH levels [34]. 
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Prebiotics, Probiotics, and Synbiotics: Prebiotics are 

food supplements with non-digestible fibers that 

selectively enhance the actions and growth of gut 

bacteria. They include inulin, oligofructose, and galacto-

oligosaccharides. Bifidobacterium and Lactobacillus 

which are commonly utilized probiotics incorporated in 

dietary supplements and functional foods [35]. Probiotic 

food products can be infant formula, ice cream, cheese, 

and fruit juices. Synbiotics are food supplements with 

both prebiotics and probiotics having synergistic roles 

which improve probiotics' survival, and balance the gut 

microbiota by increasing lactobacilli and bifidobacteria 

levels [35-38]. 

There is a link between gut microbiota and 

diabetes; prebiotics and probiotics which control gut 

microbiota can therefore be employed in diabetes 

management due to their mechanisms of action which 

include: responses to inflammation and oxidative stress 

and modifying intestinal microbiota [39-40]. Probiotics 

had a possible effect on glycemic index and significantly 

decreased blood glucose in diabetic individuals [41] but 

no significant effect on lipid profile. Zhang et al [42] 

reported a significant decrease in FBG, OGTT, HbA1c, 

LDL, HOMA-IR, and TC levels in diabetic rats. Positive 

effects of probiotics supplements on fasting blood 

glucose, HbA1c, and insulin were observed in individuals 

with T2DM [43] while Akbari & Hendijani [44] reported a 

significant decrease in fasting blood glucose and Hb1Ac 

with no effect on insulin levels and insulin resistance. 

The antioxidant and anti-inflammatory roles of 

probiotics are still controversial. However, Zhang et al 

[42] discovered that Bifidobacterium animalis had a

significant impact on GSH, CAT, SOD, and GSH-Px levels 

but reduced MDA levels in diabetic rats; there was also 

increased production of IL-10. Co-administration of 

probiotics and synbiotics significantly reduced TNF-α, 

MDA, and CRP levels while increasing NO, GSH, and TAC 

levels in diabetic individuals but no effect on IL-6 

[39,45].  Supplements of Bifidobacteria, a significant 

probiotic in the human intestine greatly improved 

insulin sensitivity with studies on B. animalis ssp. lactis 

420, Bifidobacterium lactis HY8101, Bifidobacterium 

adolescentis, and Bifidobacterium breve confirm this 

effect [42]. Probiotics stimulated cholecystokinin (CCK), 

gastric inhibitory proteins (GIP), peptide YY and GLP-1 

production, enhancing insulin secretion and uptake of 

glucose especially in the muscle [46-47]. 

Studies have shown that synbiotics and probiotics 

lowered the levels of inflammatory mediators and 

hyperglycemia [48-49] Treatment with probiotics 

improved the binding potential of insulin in T2DM and 

prevented β-cells destruction in diabetic mice [50]. It 

also promoted the transcription of glucose transporter 

thereby increasing the sensitivity of insulin in tissues 

[51]. 

Dietary Polysaccharides: Dietary polysaccharides are 

derived from fruits, vegetables, and herbs and they are 

naturally edible [52]. They possess anti-diabetic, 

antimicrobial, anti-cancer, anti-inflammatory, and 

antioxidant [53]. Polysaccharides from Acacia tortilis 

gum reduced glycated hemoglobin (HbA1c), very low-

density lipoprotein (VLDL), low-density lipoprotein (LDL), 

total cholesterol, fasting blood glucose, very low-density 

lipoprotein (VLDL), liver enzymes like AST, ALT and 

significantly increased high-density lipoprotein (HDL) 

[54]. Polysaccharides in Morus alba L. fruit improved 

blood insulin levels by increasing the expressions of 

glucose transporter 4 (GLUT4), insulin receptor (InsR), 

serine/threonine-specific protein kinase (Akt), and 

insulin receptor substrate 2 (IRS-2) in rats induced with 

T2DM [55]. Polysaccharides from mulberry leaf 

increased the production of insulin by upregulating 

insulin promoter factor 1 (PDX-1) and prevented 

apoptosis of the pancreatic β-cell by increasing B-cell 

lymphoma 2 (Bcl-2) and reducing BCL2 associated X 
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protein (Bax) expressions in STZ-diabetic rats [56]. 

Mulberry fruit-derived polysaccharides reduced MDA 

and blood glucose; increased CAT, GSH-Px, and SOD 

levels, and improved pancreas and liver damage 

significantly [57]. Polysaccharides derived from 

G.frondosa, a mushroom also lowered the levels of NO

synthase, and MDA while increasing CAT, GSH-Px, and 

SOD levels in STZ-diabetic rats [58]. Polysaccharides 

from other mushrooms like Hericium erinaceus, 

Ganoderma lucidum, and Agaricus bisporus, have been 

discovered to regulate GLUT, glycogen synthase (GS), 

and glycogen synthase kinase (GSK-3 ß) expressions in 

the muscle and liver thereby regulating blood glucose 

and glycogen levels [59]. They also decreased the 

actions of α-amylase, and α-glucosidase, and enhanced 

P13K/AKT pathways [60]. ß-D-glucan, a constituent of 

mushrooms decreased NF-kB activity inhibiting 

inflammatory cytokines activation. It also prevented 

apoptosis of β-cell in the pancreas [61]. In STZ and high 

fat-induced diabetic mice, polysaccharides of I. obliquus 

enhanced GLUT4 translocation and activated P13/Akt 

pathways thereby reducing blood glucose [62]. 

Polysaccharides from Vigna radiate L. ameliorated 

damage to the pancreas by reducing nuclear factor 

kappa B (NF-κB), IL-6, IL-8, and TNF-α levels [63-64]. 

Polysaccharides improved glucose uptake by stimulating 

P13K/Akt and MAPK/JNK/ERK pathways which enhance 

insulin sensitivity [65-66]. 

Polyunsaturated Fatty Acids (PUFAs): Sources of PUFAs 

include fish, cereals, fish oil, and oilseeds [67]. They are 

beneficial in their protective effects against 

inflammation, and it has been discovered that in T2DM, 

PUFAs reduced the levels of inflammatory biomarkers 

like TNF-α, IL-6, and CRP [68]. Omega-3 fats are found in 

fish such as salmon, tuna, and a few plant oils while 

omega-6 fats are found in many plants’ oils [69-70]. In 

children, omega-3 fatty acids (ω-3 FA) reduced the risk 

of beta cell islet autoimmunity at greater possibility of 

developing T1DM because of its anti-inflammatory 

activities. Omega-3-fatty acids also improved 

mononeuropathy in T1DM patients. ω-3 FA regulated 

carbohydrate metabolism by upregulating the PPAR 

signaling pathway in the skeletal muscle thereby 

reducing gluconeogenesis and increasing glycolysis [71]. 

Bioactive Compounds: Bioactive compound are 

chemical constituents present in minimal quantities in 

food or plant products that have impacts on the body, 

supporting good health [72]. 

Lycopene, a bioactive compound in tomatoes, 

increased insulin secretion in STZ-induced rats, lowering 

blood glucose levels [73].  

Kaempferol exhibited antidiabetic properties by 

reducing lipid peroxidation, activity of α-glucosidase, 

increasing insulin sensitivity, and antioxidant activity 

[74-75]. It also inhibited the NF-κB pathway by 

degrading I-kappa B kinase (IKK) thereby improving 

inflammation and insulin signalling [76].  

P-coumaric acid reduced blood glucose levels by

stimulating GLUT-2 in the pancreas, regulating lipid 

metabolism, and lowering levels of inflammatory 

biomarkers [77]. 

Cinnamic acid in berry, kiwi, pear, and plum 

exerted its antidiabetic actions by increasing glucose 

uptake, secretion of insulin and adiponectin, improving 

pancreatic β-cells functioning, and reducing actions of 

protein tyrosine phosphatase 1B, pancreatic α-amylase, 

α-glucosidase, and dipeptidyl peptidase-4 [78]. 

Catechin increased nitric oxide production by 

stimulating endothelial phosphoinositide (P13K) and 

nitric oxide synthase (eNOS) thereby reducing lipid 

peroxidation and oxidative stress [79]. Bioactive 

compounds in garlic downregulated inducible NO 

synthase (iNOS) and cyclooxygenase-2 (COX2) 

expressions and decreased the levels of NO, TNF-α, NF-

κB, and IL-1β [80].  
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Curcumin, a purified compound from Curcuma 

longa L improved insulin signaling by upregulating the 

expressions of P13K, Akt, IRS-2, and (IGF)-1R and 

downregulating IRS-1 and IR [81]. A significant reduction 

in glucose levels, IL-6, and C-reactive protein and an 

improvement in insulin levels were observed in diabetic 

rats after curcumin administration [82]. The expression 

of cyclic nucleotide phosphodiesterases was 

downregulated by curcumin thereby increasing 

pancreatic secretion of insulin [83]. In STZ-induced rats, 

there was a decrease in iNOS, vascular endothelial 

growth factor (VEGF), and intercellular adhesion 

molecule-1 (ICAM-1) levels [84]. Curcumin extract 

greatly improved HbA1c level and HOMA-IR index [85]. 

In diabetic women with polycystic ovarian syndrome, 

curcumin increased HDL-C, insulin sensitivity, 

expressions of low-density lipoprotein receptor and 

peroxisome proliferator-activated receptor gamma 

(PPAR-γ) but decreased fasting glucose, insulin, HDL-C, 

and total cholesterol levels after 12 weeks of daily 

intake [86-87]. 

Curcuminoids, phenolic compounds from Curcuma 

longa roots have hypoglycemic activity and improve 

insulin resistance in the skeletal muscle by upregulating 

GLUT4 actions and the level of insulin receptor substrate 

1 (IRS-1) thereby enhancing glucose absorption in high-

fructose fed Wistar rats [88]. 

Resveratrol, a polyphenol found in peanuts, 

grapes, and berries exerts anti-inflammatory properties 

by suppressing the activities of cytokines, and pro-

inflammatory kinases, increasing the expression of 

sirtuin (SIRT1), and inhibiting nuclear factor-ĸB. 

Resveratrol also has antioxidant capacities. In cellular 

and animal studies, resveratrol possesses glucose-

reducing effects and enhances insulin production from 

the β-cells in T2DM [85]. It prevented dysfunctions of 

the pancreatic β-cells and suppressed 

phosphodiesterase activity thereby increasing β-cells 

function [89]. 

Ferulic acid, abundant in grapes, cereal, spinach, 

whole grains, barley has been discovered to possess 

cardioprotective potentials by significantly reducing 

blood glucose, HbA1c, cardiac hypertrophic index, 

cardiac CK-MB, LDH while significantly increasing SOD, 

CAT, GPx, GRd and GSH in the cardiac tissue in STZ-

induced diabetic rats [90 

CONCLUSION 

Diabetes prevalence is rapidly rising at an alarming rate. 

Prevention and management of the disease have 

become of optimum concern amongst health workers 

and researchers. Several studies have uncovered the 

usefulness and effectiveness of functional foods in the 

management of diabetes. Some of these functional 

foods improve insulin resistance, reduce oxidative 

stress, and lower blood glucose and inflammation which 

are associated with diabetes. Therefore, their use can be 

encouraged in the management of diabetes. 
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