
Dietary Supplements and Nutraceuticals 2023;2(10):41-54    DNS   Page 41 of 54 

Research Article       Open-Access 

Beneficial effect of Cellgevity® on metabolic indices, lipid profile, 
and antioxidant enzymes in cold-restraint stress rat model 

Adekunle Muiz Mofolorunso1*, Kehinde Emmanuela Oyebanji2, Chinenye Nneamaka Ndubuisi2, Titilola Aderonke 

Samuel3, Ayodele Olufemi Morakinyo2 

1Department of Physiology, Babcock University School of Basic Medical Science, Ilishan, Ogun State, 121003, Nigeria. 
2Department of Physiology, College of Medicine, University of Lagos, Idi-Araba, Lagos State, 101014, Nigeria. 
3Department of Biochemistry, College of Medicine, University of Lagos, Idi-Araba, Lagos State, 101014, Nigeria. 

*Corresponding Author: Adekunle Muiz Mofolorunso, Department of Physiology, Babcock University School of Basic

Medical Science, Ilishan, Ogun State, 121003, Nigeria

Submission Date: August 31st, 2023; Acceptance Date: October 3rd, 2023; Publication Date: October 11th, 2023 

Please cite this article as: Mofolorunso A.M., Oyebanji K. E., Ndubuisi C. N., Samuel T. A., Morakinyo A. O. Beneficial effect 

of Cellgevity® on metabolic indices, lipid profile, and antioxidant enzymes in cold-restraint stress rat model. Dietary 

Supplements and Nutraceuticals 2023; 2(10): 41-54. DOI: https://www.doi.org/10.31989/dsn.v2i10.1223 

ABSTRACT 

Background: Stress is a state of imbalance homeostatic environment caused by a psychological, environmental, or 

physiologic stressor. Stress is a common risk factor that is involved in the etiopathogenesis of diverse disorders. 

Moreover, stress hormones have an immediate negative impact on glycemic management. 

Purpose of Study: The aim of our study is to investigate the glucometabolic potential of Cellgevity® under stress 

conditions in male Sprague-Dawley rats. We employed cold restraint stress to effectively induce a physically and 

psychologically stressed condition. 

Methods: Twenty-four (24) male Sprague-Dawley rats (207±20g) were divided into four groups at random: No stress 

Placebo (NSP), no stress cellgevity (NSCG), stress placebo (STP) and stress cellgevity (STCG). The restraint (immobilization) 

stress was performed 2hr daily in the morning using a cylindrical cage (8:00 h± 10:00 h.), and the cold stress was 

performed for 2hr in the afternoon (16:00 h± 18:00 h). The enzyme-linked immunosorbent assay was used to assess the 

circulating insulin and corticosterone levels. The glucose tolerance test (GTT) and insulin tolerance test (ITT), as well as 

the expression of G6PDH, alpha-amylase, and alpha-glucosidase enzymes were evaluated for glucose metabolism. 

Biochemical parameters such as Lipid profile, liver enzymes, and oxidative stress parameters were also determined. 
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Results: The STP rats had increased oxidative stress levels, elevated corticosterone levels, insulin resistance, 

dyslipidemia, and oxidative liver damage. Furthermore, cold restraint stress improved insulin levels but had no effect on 

glucose tolerance. However, Cellgevity® mitigates cold restraint stress-induced oxidative damage by causing reduction 

in corticosterone levels, modulating serum oxidative stress markers as well as metabolic indices. 

Keywords: Cold-restraint Stress, Glucose Tolerance, Insulin Sensitivity, Corticosterone, oxidative stress. 
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INTRODUCTION 

Stress, a perturbation of homeostasis triggered by 

psychological, environmental, or physiological stressors 

[1], constitutes an adaptive biological response to 

disturbances that unsettle equilibrium [2]. Stress 

constitutes a pervasive risk factor, implicated in 75%–

90% of diseases, and is intricately linked with the 

etiopathogenesis of diverse disorders, ranging from 

peptic ulcers and insulin resistance to diabetes, 

hypertension, reproductive dysfunction, insomnia, and 

anxiety-related behavioral disorders [3-4]. 

Subsequent health derangements stemming from 

stress are often attributed to the deleterious influence of 

free radicals, which inflict tissue damage within the body 

[5]. The intriguing aspect lies in the inherent 

natural control of free radical formation by a cohort of 

beneficial compounds recognized as antioxidants [6]. 

Antioxidants have the capability to decrease molecular 

oxidation, and a well-balanced or supplemented diet 

rich in antioxidant sources is particularly crucial for 

sustaining overall well-being [7]. Through their ability to 

stabilize or counteract free radicals, antioxidants act 

as a protective barrier against damage to cells. 

Regrettably, insufficient availability of these 

antioxidants either in diets or supplements 

culminates in a gradual and incapacitating cellular 

degradation occasioned by unchecked free radicals 

[8]. 
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The increasing global trend in the use of antioxidant 

treatments involving dietary supplements is now a 

widespread phenomenon and it represents a strategy to 

mitigate oxidative stress and resultant damage [9]. These 

dietary antioxidants are touted as instrumental for 

sustaining a healthy lifestyle and potentially extending 

lifespan [10]. These supplements encompass a wide 

range of constituents designed to fulfill vital nutritional 

requirements, spanning vitamins, minerals, amino acids, 

and herbal extracts, essentially forming an intermediary 

category between foods and medicinal agents. Emerging 

propositions posit that dietary antioxidants, including 

vitamins and non-nutrient counterparts like plant-

derived flavonoids, exhibit the capacity to attenuate 

many of the deleterious consequences of oxidative stress 

[11-12]. 

Certain dietary supplements have additionally 

garnered attention for their purported ability to 

replenish the body's intrinsic and abundant antioxidant, 

reduced glutathione (GSH) [6]. Notably, these GSH-

boosting dietary supplements, despite their limited 

empirical validation, are postulated to play a pivotal role 

in preventing various diseases [13], particularly those 

caused by free radicals and characterized by diminished 

GSH tissue reservoirs [14]. Among these, Cellgevity®, a 

dietary supplement, contains reduced glutathione 

precursor molecule Riboceine (D-ribose-L-cysteine), 

which has been shown to increase cellular transportation 

of cysteine, therefore increasing GSH levels. Riboceine 

has exhibited superior efficacy compared to other GSH 

enhancers [15]. 

Considering the convincing evidence supporting the 

importance of maintaining strong antioxidant defenses 

and the various uses of Cellgevity® in improving systemic 

and/or tissue-specific glutathione levels, our hypothesis 

suggests that Cellgevity® could enhance glucometabolic 

disorders triggered by stress by augmenting GSH 

reserves and alleviating oxidative damage. 

Consequently, we examined the glucometabolic 

potentials of Cellgevity® under stress conditions, using 

Sprague-Dawley rats as the experimental model. 

MATERIALS AND METHODS

Animals: Twenty-four (24) male Sprague-Dawley 

rats (207±20g) were obtained and sustained on a 

regular chow and adequate water at our animal 

facility in controlled humidity (60% ± 5%) under a 12-

hour light-dark cycle. All experimental procedures were 

ratified by the Institutional Research and Ethics 

Committee and conformed to the Guide for the 

Care and Use of Laboratory Animals as published 

by the National Institutes of Health for studies 

involving experimental animals and the procedures as 

documented by Kilkenny et al. [16]. 

Experimental Designs: The rats were 

randomly distributed into four groups of six rats each.  

Group one- No Stress + Placebo (NSP) serve as negative 

control and was given distilled water as a placebo 

(same volume as cellgevity solution). Group two- No 

Stress + CellGevity (NSCG) served as a positive 

control and administered with Cellgevity® 

supplementation (30 mg/kg b.w). Groups three and 

four were exposed to restraint as well as cold stress. 

While group three: Stress + Placebo (STP) was given 

distilled water (vol/kg b.w), group 4: Stress + CellGevity 

(STCG) received Cellgevity® supplementation (30 mg/kg 

b.w).  

Stress Protocol: This study employs a modified version 

of the restraint as well as cold stress protocol described 

by Paula-Freire et al. [17]. Cold restraint stress 

effectively imitates a physical and psychological stress 

state [18]. The animals were exposed to stress for the 

duration of 10 
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days. The immobilization (restraint) stress was 

performed in the morning via a cylindrical cage for 2 

hours daily (8:00 h 10:00 h.) while the Cold pressure was 

applied for 2 hours in the evening (16:00 h 18:00 h).  

Cellgevity Dietary Supplements: Cellgevity® (CG) dietary 

supplement used in this study was manufactured by 

Cornerstone Research and Development Inc, Ogden, 

Utah USA. Each capsule contained 21.25 mg of Vitamin C, 

6.25 µg Selenium, 62.5 mg RiboCeine, and 290 mg 

proprietary blend. Cellgevity (CG) was prepared daily 

with distilled water for use in supplementation. All of the 

other chemical compounds utilized in this study were of 

excellent analytical standard. The CG supplementation 

began a week prior to the stress trials and was sustained 

for a period of 10 days. Animals were administered CG via 

the oral gavage after being dissolved in distilled water 

(vehicle) [19].  

Oral glucose tolerance test (OGTT): On the fourteenth 

day of CG administration, all experimental rats were 

fasted for a period of twelve hours, and the fasting 

glucose level (FBG) value was set as the baseline blood 

glucose value for 0 minutes. Following that, the rats were 

given a gavage containing 2.0 g/kg of glucose after 

diluting it in distilled water, and FBG was measured after 

thirty, sixty, and 120 minutes of glucose ingestion. The 

value of the AUC (area under the curve) was computed. 

Blood Collection: On the seventeenth day of CG 

administration, the rats were subjected to the two stress 

protocols concurrently over a period of two hours [17]. 

Following the final stress session, blood samples were 

collected via ocular puncture into heparinized and plain 

plastic tubes (which were allowed to clot for 30 minutes 

before centrifugation at 4°C for a period of 10 minutes at 

10,000 revolutions per minute (rpm). Plasma and serum 

samples were thereafter stored in sealable 

polypropylene micro-centrifuge tubes at –20° C until 

assayed for serum corticosterone, plasma oxidative 

markers, serum insulin levels, serum liver enzymes, and 

other biochemical parameters.  

Fasting insulin level, insulin sensitivity, and resistance 

indices: The fasting insulin level (FINS, μIU/mL) was 

determined using the ELISA kit, and the following were 

calculated. 

Insulin sensitivity index (ISI)=Ln [(FBG dieFINS-1)] 

Insulin resistance index (IRI)= (FBG um FINS)/22.5. 

Corticosterone Levels: Corticosterone hormone is a 

marker of stress used to assess levels of stress. The ELISA 

assay was carried out with the use of a commercially 

available CORT kit (Elabscience Biotechnology Co., Ltd., 

China), which is a sensitive bioassay for determining the 

concentration of corticosterone in body fluids. The 

process was carried out according to the directions 

provided by the manufacturer. 

Antioxidant enzymes and Oxidative markers: Activities 

of superoxide dismutase (SOD), catalase (CAT), reduced 

glutathione (GSH), and levels of malonaldehyde (MDA) 

were determined in both blood and tissue samples. As for 

the tissue samples, liver homogenates were prepared 

(immediately after dissection) from a known weight of 

the liver 10% tissues (w/v) in 0.05 M phosphate buffer, 

pH 7.4. 

The procedure described by Van Dooran et al. [20] 

was used to calculate GSH activity. The procedure is 

based on the reaction of Ellman's 5, 5 'dithiobis (2-

nitrobenzoic acid) DNTB) reagent with the GSH thiol 

group at pH 8.0 resulting in a yellow 5-thiol-2-
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nitrobenzoate at 412nm. Sun and Zigman's [21] 

procedure was also used to determine SOD activity. 

BIOCHEMICAL PARAMETERS 

Liver Enzymes: The enzymes aspartate transaminase 

(AST), alanine transaminase (ALT), and alkaline 

phosphatase (ALP) were all measured with a commercial 

kit and an automated analyzer (CobasMira, Roche 

Diagnostic Systems, Switzerland). 

Lipid Profile: An automated biochemistry analyzer (BT 

2000 Plus, Germany) was used to estimate total 

cholesterol (CHOL), triglycerides (TRIG), and high-density 

lipoprotein (HDL) using diagnostic kits for each one 

purchased from BioSystems® (S.A Costa Brava of 

Barcelona, Spain). Low-density lipoprotein was 

computed using the Freidewald formula [22]. 

Determination of Ferric Reducing Ability of Plasma 

(FRAP): Ferric ion reducing antioxidant power (FRAP) is 

an antioxidant capacity assay. The total antioxidant 

capacity (FRAP) was determined by the potential of the 

samples to decrease Fe+3 to Fe+2, which was 

subsequently chelated with TPTZ (2,4,6-Tris (2-pyridyl)-s-

triazine) to generate the Fe+2-TPTZ deep blue complex 

[23]. The reaction was subsequently quantified using a 

spectrophotometer at a wavelength of 593 nm. 

Determination of Glucose-6-Phosphate Dehydrogenase 

(G6PDH): The enzyme activity of G6PDH was measured 

using nicotinamide adenine dinucleotide phosphate 

hydrogen (NADPH) production at a wavelength of 340 

nm.  

Alpha-amylase and alpha-glucosidase evaluation: This 

experiment was a modified method by McCue and Shetty 

(2004). The solutions were incubated at 25oC for 5 

minutes before being halted after boiling for 2 minutes. 

The absorbance of the resultant p-nitro phenol (pNP) was 

measured at 405 nm with a spectrophotometer and was 

shown to be proportional to the enzyme activity. The 

alpha-glucosidase inhibitory assay incorporated acarbose 

as the reference drug. All experiments were carried out 

in triplicate. 

Statistical analysis: GraphPad Prism 7.01 software 

(GraphPad Software, Inc.) was used for all data analyses. 

One-way ANOVA was used to compare the measurement 

data presented as mean ± standard error of the mean. 

Multiple comparisons were performed using the 

Students Newman-Kruel (SNK) method. The level of 

statistical significance was defined as a p-value of 0.05. 

RESULTS 

Effect of Cellgevity® on Blood Glucose level and Insulin 

Concentration: As indicated in figure 1a below, there was 

no significant difference (P>0.05) in the fasting blood 

glucose concentration in STP, NSCG and STCG rats (72.50 

± 9.55, 78.17 ± 6.56 and 59.00 ± 2.48) compared with NSP 

group (74.17 ± 9.55). However, the glucose concentration 

in STCG group (59.00 ± 2.48) was significantly lower 

(p<0.05) compared with STP and NSCG rats (72.50 ± 9.55, 

78.17 ± 6.56). Figure 1b indicates that Cold restraint 

stress caused a significant (p<0.05) increase in insulin 

concentration in STP group when compared with the NSP 

(0.42 ± 0.01 vs 0.34 ± 0.02). However, STCG rats had 

significantly (p< 0.05) reduced concentration of insulin 

compared with STP rats (0.36 ± 0.01 vs 0.42 ± 0.01) 

(Figure 1b). 
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Figure 1a. Effect of Cellgevity® on blood glucose level in cold-restraint rats during glucose tolerance test.  

Figure 1b. Effect of Cellgevity® on serum insulin concentration in cold-restraint rats. Value expressed as mean ± SEM, n= 6 

per group, ∗p < 0.05 vs NSP, α p< 0.05 vs STP (one-way ANOVA followed by SNK post hoc test).  

Effect of Cellgevity® on Glucose Tolerance and 

Insulin Sensitivity (using HOMA-IR): The blood 

glucose curve during the glucose tolerance test in 

stressed (STP, STCG) and no stress animals (NSP, NSCG) 

is depicted in figure 2a. Results from the GTT test 

showed no significant difference (p>0.05) in the 

glucose tolerance of both stressed (STP, STCG) 

when compared with no stress animals (NSP, NSCG) 

as indicated by a similar AUC glucose (Figure 2a). While 

in Fig 2b, Cellgevity® produced no 

significant difference (p > 0.05) in the HOMA-IR 

index between NSCG and NSP. However, HOMA-

IR was significantly increased in STP (1.34 ± 0.04) 

compared with control rats (1.12 ± 0.04). Conversely, 

HOMA-IR in STCG group (0.94 ± 0.06) was significantly 

reduced compared with both NSP and STP (1.12 ± 0.04, 

1.34 ± 0.04) (Figure 2b). 

Figure 2a. Effect of Cellgevity® on AUCOGTT level in cold-restraint rats.  

Figure 2b. Effect of Cellgevity® on HOMA-IR indices level in cold-restraint rats. Values expressed as mean ± SEM, n= 6 per 

group, ∗p < 0.05 vs NSP, α p< 0.05 vs STP (one-way ANOVA followed by SNK post hoc test). 

Figure 3 shows the corticosterone level in rats exposed to 

cold stress and their control group. CORT level in STP and 

STCG groups was significant higher (P<0.05) compared 

with control group (NSP) indicating elevated stress level 

in STP and STCG. However, administration of Cellgevity® 

caused a significant reduction (p<0.05) in CORT level of 
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STCG compared to STP (15.52 ± 0.27 vs 20.05 ± 0.36) 

(Figure 3). 

Figure 3. Effect of Cellgevity® on corticosterone level in cold-restraint rats. Values are expressed as mean ± SEM, n= 6 per 

group, ∗p < 0.05 vs NSP, α p< 0.05 vs STP (one-way ANOVA followed by SNK post hoc test). 

Effect of Cellgevity® on corticosterone (CORT) level. 

Effect of Cellgevity® on oxidative stress and antioxidant 

markers: The effect of cold restraint stress was examined 

on serum oxidative stress and antioxidant biomarkers in 

male Sprague-Dawley rats. Figure 4 (a-d) shows the effect 

of cold restraint stress on SOD and CAT levels. The STP 

group showed a significant decrease in CAT level 

compared with NSP (Control) group. Meanwhile the STP 

group had a significant higher MDA level, while the GSH 

level showed no significant difference compared with 

control (NSP) rats.  STCG rats had significant higher levels 

of SOD and CAT compared with NSP and STP rats. 

However, GSH level in STCG group is within the range of 

STP and NSP rats. STCG rats had significant higher MDA 

level compared with NSP but a significantly lower MDA 

level compared with STP.  

Figure 4 a-d. Effect of Cellgevity® (a) SOD, (b) CAT, (c) GSH, (d) MDA  in cold-restraint rats. Values expressed as mean ± SEM, 

n= 6 per group, ∗p < 0.05 vs NSP, α p< 0.05 vs STP (one-way ANOVA followed by SNK post hoc test). 

3.05 Effect of Cellgevity® on liver enzymes ： In the 

plasma, the AST level of the cold-restraint (STP) and 

Cellgevity® (STCG) groups were similar to the control 

(NSP). Conversely, both cold-restraint (STP) and 
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Cellgevity® (STCG) groups appear to significantly cause a 

higher level of ALT and ALP as seen compared with NSP. 

Table 1. Effect of Cellgevity® on liver enzyme in cold-restraint rats 

Parameters NSP NSCG STP STCG 

AST 58.17±0.31 62.17±0.31 64.20±0.37 58.40±0.68 

ALT 16.40±0.51 16.50±0.29 23.00±0.45* 23.50±0.29* 

ALP 20.40±0.24 27.50±0.29* 26.80±0.37* 27.83±0.31* 

Values expressed as mean ± SEM, n= 6 per group, ∗p < 0.05 vs NSP (one-way ANOVA followed by SNK post hoc test). 

Effect of Cellgevity® on Lipid Profile: We examined the 

effect of Cellgevity® on serum lipid profile in cold 

restraint stressed male Sprague-Dawley rats. According 

to Table 2 below, rats exposed to cold restraint stress 

(STP) had similar CHOL and LDL levels compared with NSP 

rats. However, the HDL level in STP rats increased 

significantly (p<0.05) compared with NSP, but the TRIG 

level showed a significant decrease (p<0.05).  

Administration of Cellgevity® profoundly alters the lipid 

profile in STCG rats as significant reduction was observed 

in all the lipid profile parameters when compared with 

NSP and STP groups. Furthermore, NSCG rats had 

significantly lower CHOL and TRIG compared with 

control. The HDL level in the NSCG group was similar to 

control, while LDL level was significantly higher.  

Table 2. Effect of Cellgevity® on lipid profile index in cold-restraint rats 

Parameters NSP NSCG STP STCG 

Chol 2.07±0.05 1.77±0.03* 1.98±0.05 1.68±0.04*α 

TRIG 0.98±0.02 0.78±0.02* 0.68±0.02* 0.55±0.03* α 

HDL 1.02±0.02 0.95±0.02 1.15±0.02* 0.90±0.04*α 

LDL 0.65±0.03 0.86±0.04* 0.68±0.02 0.55±0.03*α 

Values expressed as mean ± SEM, n= 6 per group, ∗p < 0.05 vs NSP, α p< 0.05 vs STP (one-way ANOVA followed by SNK post 

hoc test). 

Effect of Cellgevity® on FRAP and G6PDH level: Figure 5a 

shows the level of FRAP after cold restraint stress 

exposure in rats. Cold-restraint stress (STP) significantly 

elevated FRAP level in STP group compared with control 

(NSP). However, following the administration of 

Cellgevity®, FRAP level was significantly reduced (p<0.05) 

in STCG rats compared with NSP and STP. FRAP level was 

also significantly reduced in NSCG rats compared with 
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NSP. The level of G6PDH after cold stress exposure in rats 

is depicted in Figure 5b. G6PDH level was a significant 

higher in STP group compared with control (NSP). 

Cellgevity® administration in STP group elevated G6PDH 

level significantly (p<0.05) when compared with NSP and 

STP. 

Figure 5a. Effect of Cellgevity® on FRAP level in cold-restraint rats.  

Figure 5b. Effect of Cellgevity® on G6PDH level in cold-restraint rats. Values expressed as mean ± SEM, n= 6 per group, ∗p < 0.05 

vs NSP, α p< 0.05 vs STP (one-way ANOVA followed by SNK post hoc test).  

Effect of Cellgevity® on Alpha Amylase and Alpha 

Glucosidase levels: Alpha amylase level after cold 

restraint stress exposure in rats is depicted in Figure 6a. 

The alpha amylase level is apparently decreased in cold-

restraint rats (STP) compared with control rats. After 

administration of Cellgevity®, alpha amylase level was 

significantly increased (p<0.05) in STCG rats compared 

with NSP and STP rats. NSCG also had a significant 

increase in alpha amylase level compared with NSP. 

The level of alpha glucosidase is depicted in Figure 6b. 

The alpha glucosidase level in STP rats is apparently lower 

compared with control rats (NSP). However, after 

administration of Cellgevity® a significant decrease 

(p<0.05) was observed in the alpha glucosidase level in 

STCG rats compared to NSP and STP. 

Figure 6a. Effect of Cellgevity® on α-amylase level in cold-restraint rats.  

Figure 6b. Effect of Cellgevity® on α-glucosidase level in cold-restraint rats. Values expressed as mean ± SEM, n= 6 per 

group, ∗p < 0.05 vs NSP, α p< 0.05 vs STP (one-way ANOVA followed by SNK post hoc test). 

DISCUSSION 

This present study examined the glucometabolic 

potential of Cellgevity® under stress conditions in male 

Sprague-Dawley rats. We employed cold restraint stress 

to effectively induce a physical and psychological stress 

condition [18]. Cellgevity® is a dietary supplement that 
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contains D-ribose and L-cysteine, two main molecules 

that boost intracellular GSH synthesis and 

concentrations, lowering oxidative stress [24]. The recent 

rise in antioxidant treatment further clarifies why dietary 

antioxidant has continually been at the forefront of 

preventive medicine [25-26]. Our findings reveal that 

cold restraint stress increases oxidative stress level and 

corticosterone levels as well as promotes insulin 

resistance. Furthermore, there was an increase in the 

level of insulin, but cold restraint stress did not alter 

glucose tolerance. However, Cellgevity® modulates some 

of the oxidative damage induced by cold restraint stress 

[27-28]. 

Different studies have shown that stress 

deteriorates glycaemic and induces metabolic 

dysfunction such as impaired glucose tolerance and 

insulin insensitivity, hyperinsulinemia, hyperglycemia, 

and increased corticosterone levels Results from our 

study indicated that Cellgevity® supplementation 

reduced significantly, the increased blood glucose 

induced by cold restraint stress. We observed an altered 

insulin sensitivity induced by stress, while glucose 

tolerance was unaffected. The oral glucose tolerance test 

(OGTT) is commonly used in clinical settings to assess 

apparent insulin resistance and insulin resistance. [29]. 

When insulin fails to increase glucose absorption and 

reduce hepatic glucose synthesis, insulin resistance is 

evident. Insulin is a critical regulator of carbohydrate 

metabolism and serves as the primary regulator of 

glucose levels by increasing glucose absorption into 

insulin-sensitive organs such as the liver and skeletal 

muscles [30-31]. Considering the importance of insulin in 

glucose metabolism, we measured the fasting plasma 

insulin level and observed an elevated insulin 

concentration in response to cold restraint stress. As a 

result, the resulting hyperinsulinemia and decreased 

glucose clearance after insulin challenge in cold restraint 

rats suggest impaired insulin sensitivity and glucose 

control. Our data further shows Cellgevity® 

supplementation ameliorate insulin sensitivity as well as 

cause a significant reduction in fasting plasma insulin 

levels in male Sprague-Dawley rats. This corroborates the 

perception that dietary antioxidants improve insulin 

sensitivity by eliminating to a larger extent some of the 

oxidative damage to insulin-responsive tissues. 

The physiological responses to acute and chronic 

stressors have been observed to differ in rodents [32-33]. 

ACTH is released in response to stress, and it acts on the 

adrenal cortex to induce the production and release of 

corticosterone [34]. Corticosterone elevates blood 

glucose levels by mobilizing stored energy reserves in 

body tissues [35]. Corticosterone stimulates 

gluconeogenesis in the liver [36], and can also cause 

damage to the liver tissue by increasing oxidative stress 

[37]. In this study, the elevated stress level was indicative 

as levels of corticosterone in stressed rats significantly 

increased. However, our data shows that the 

administration of Cellgevity® modulates the effect of 

stress by reducing corticosterone levels. Furthermore, 

lower corticosterone levels improved glucose uptake, 

[38] allowing glycemia to be controlled even after stress

induction. Recent research has linked stress-induced 

increases in glucocorticoids to glucose control 

dysregulation [39]. Stress also increases the generation 

of reactive oxygen species (ROS), which causes lipid 

peroxidationUnder stress, our bodies produce more ROS 

than antioxidant species, resulting in an imbalance that 

can damage cellular components such as lipids, protein, 

and DNA. Our data suggest that lipid peroxidation 

induced by stress is slightly modulated by Cellgevity® 

supplementation. Although in contrast to our hypothesis, 

the GSH level was comparable between stressed rats 

with or without Cellgevity® supplementation. Also, the 

total antioxidant capacity from the FRAP result in our 
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study shows contrasting values. While stressed animals 

have increased total antioxidant activity, Cellgevity® 

supplementation shows a reduced FRAP value. Next, we 

measured the effect of Cellgevity® supplementation on 

liver damage. The etiopathogenesis of liver diseases is 

widely assessed by enzyme levels such as ALT, AST, and 

ALP. Stress-induced liver damage has been extensively 

investigated [40].  

Data from our current research shows that 

exposure of rats to cold restraint stress resulted in 

marked liver damage, as evidenced by a significant 

increase in serum enzyme concentrations (ALT, ALP, and 

AST). Cellgevity® supplementation however did not 

attenuate the effect of stress on the liver as depicted in 

our data. The lipid profile after rats’ exposure to cold 

restraint stress was also evaluated in the current study. It 

is well known that adipose tissue regulates energy 

homeostasis as well as the metabolism of glucose and 

lipid dynamically and critically [41]. Dyslipidemia has an 

important role in metabolic disorders and is a significant 

contributor to insulin resistance. This study's 

investigation of the lipid profile revealed that the level of 

TRIG in cold-restraint rats was noticeably higher than 

controls. Insulin resistance has been linked to elevated 

TRIG levels, and in a similar way, elevated corticosterone 

levels have been linked to resistance to insulin [42-43]. 

Although our result suggests modulation of stress-

induced hyperlipidemia, there was a decline in HDL level 

after Cellgevity® supplementation. 

Activities of some enzymes involved in glucose 

metabolism were also determined. For instance, G6PD, 

which catalyzes the oxidation of glucose-6-phosphate to 

satisfy the cellular needs for reductive biosynthesis and 

the maintenance of cellular redox state, was evaluated. 

G6PD-deficient cells that have been damaged may impair 

the normal physiological activities of many tissues. In this 

study, we observed G6PD expression was enhanced in 

Cellgevity® treated rats after cold restraint stress.  

Alpha-amylase is an enzyme present in saliva and 

pancreatic juice that catalyzes the hydrolysis of starch to 

smaller oligosaccharides, which are then degraded to 

glucose by alpha-glucosidase, an enzyme found at the 

mucosal brush border of the small intestine. Alpha-

glucosidase and alpha-amylase inhibitors could be useful 

in the development of medications to treat obesity, 

diabetes, and hyperlipidemia [44].  Cellgevity® elicited a 

higher inhibition on the activity of alpha-glucosidase than 

alpha-amylase, which may be a positive indicator in 

eliminating the negative side effects associated with 

traditional alpha-glucosidase and alpha-amylase 

inhibitors. 

CONCLUSION 

Findings from our study suggest that cold restraint stress-

linked disruption of glucometabolic indices in rats 

involves mechanisms leading to insulin resistance, 

hyperlipidemia, elevated oxidative stress, and higher 

corticosterone levels. Additionally, Cellgevity® 

supplementation showed modestly positive effect on 

stress-induced damage notably by reducing the serum 

corticosterone levels and modulating both serum 

oxidative stress markers and metabolic parameters. 

Interestingly we did not observe significant 

improvements in liver damage, hyperlipidemia or the 

GSH boosting effects of Cellgevity®. This might be 

attributed to the relatively short duration of our study. 

However, the usage of this dietary antioxidant against 

stress-induced damage should be taken with medical 

recommendation. Taken together, Cellgevity® on cold 

restraint rat models appeared to enhance 

glucometabolic functions by potentially exhibiting a mild 

beneficial effect.  
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Abbreviation: ALP: Alkaline phosphatase; ALT: Alanine 

transaminase; AST: Aspartate transaminase; AUC: Area 

under the curve; CAT: Catalase; CG: Cellgevity®; CHOL: 

Total cholesterol; DNA: Deoxyribonucleic acid; DNTB: 

Ellman's 5, 5 'dithiobis (2-nitrobenzoic acid); FBG: Fasting 

glucose level; FINS: Fasting insulin level; FRAP: Ferric ion 

reducing antioxidant power; G6PDH: Glucose-6-

Phosphate Dehydrogenase; GSH: Reduced glutathione; 

HDL: High-density lipoprotein; HOMA-IR: Homeostatic 

Model Assessment for Insulin Resistance; IRI: Insulin 

resistance index; ISI: Insulin sensitivity index; LDL: Low-

density lipoprotein; MDA:Malonaldehyde; NADPH: 

Nicotinamide adenine dinucleotide phosphate hydrogen; 

OGTT: Oral glucose tolerance test; pNP: p-nitro phenol; 

ROS: Reactive oxygen species; SOD: Superoxide 

dismutase; TPTZ: 2,4,6-Tris (2-pyridyl)-s-triazine; TRIG: 

Triglycerides 
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