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ABSTRACT: CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) technology has emerged as a 

groundbreaking tool for genome editing, revolutionizing the management of genetic diseases. Its precision, efficiency, 

and adaptability enable targeted modification of DNA sequences, offering therapeutic potential for a wide range of 

inherited disorders. This technology utilizes the Cas9 endonuclease, guided by RNA, to introduce site-specific cuts in the 

genome, facilitating the correction, disruption, or replacement of genes. Applications include addressing monogenic 

disorders such as cystic fibrosis, sickle cell anemia, and Duchenne muscular dystrophy, as well as polygenic conditions 

and diseases linked to somatic mutations, including certain cancers. Furthermore, CRISPR has opened avenues for ex 

vivo and in vivo gene therapies, including the use of stem cells and viral vectors for effective delivery. While significant 

ethical and technical challenges remain, such as the risk of unintended genetic modifications and equitable access to 

therapy, CRISPR represents a paradigm shift in the treatment of genetic diseases. These abstract highlights the current 

state, challenges, and prospects of CRISPR technology as a transformative tool in precision medicine. 
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INTRODUCTION 

Genetic scissoring, also known as CRISPR (an acronym for 

Clustered Regularly Interspaced Short Palindromic 

Repeats), is a method for identifying and modifying a 

specific segment of DNA within a single cell, utilizing a 

protein called Cas9 and a guide RNA [1]. Francisco Mojica 

was the first researcher to characterize what is termed 

the CRISPR Locus, reported in 1993. He worked with 

CRISPR throughout the 1990s, and in 2000, he observed 

that what had been reported repeatedly as disparate 

repeat sequences did share a standard set of features, 

now known as CRISPR sequences (he coined the term 

CRISPR through correspondence with Ruald Jansen, who 

first used the term in print in 2002) [2]. This finding led 

him to hypothesize, correctly, that CRISPR is an adaptive 

immune system. 

The application of genetic scissoring, particularly through 

techniques like CRISPR-Cas9, has revolutionized the field 

of genetics, offering immense potential in the prevention 

and management of genetically related diseases [3-4]. 

This innovative technology opens up new avenues for 

treating conditions such as cystic fibrosis, sickle cell 

anemia, and certain types of cancer, offering hope for 

cures and preventive strategies that were previously 

unimaginable. As research advances, genetic scissoring 

stands at the forefront of personalized medicine, 

promising to transform healthcare by addressing the root 

causes of genetic disorders [5]. CRISPR (Clustered 

Regularly Interspaced Short Palindromic Repeats) has 

revolutionized molecular biology by enabling precise 

DNA modifications, transforming medicine, agriculture, 

and evolutionary science. Innovative variants—base 

editing and prime editing—introduced in 2019, allow 

single-letter changes and complex DNA edits without 

double-strand breaks [6-7]. Clinical trials have shown 

promising outcomes, including complete remission in 

some patients [8-9]. Figure 1 presents a schematic 

representation of the gene editing process. 

In gene therapy, CRISPR has been used to modify both 

somatic and germ-line cells for treating genetic disorders 

and cancer [5,10]. In oncology, CRISPR enhances CAR-T 

therapy by increasing T-cell precision and reducing side 
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effects [11]. Engineered CAR-T cells have demonstrated 

persistent antitumor activity [12]. Gene drives, which use 

CRISPR to spread genetic traits through populations—like 

malaria-resistant mosquitoes—raise ecological concerns 

due to their potential irreversible impact [13-14]. 

CRISPR’s precision in gene editing is rooted in stable RNA-

DNA binding and Watson-Crick pairing rules [15-[16]. 

Guide RNAs direct nucleases to specific DNA targets, 

enabling sequence-specific genome modifications [17]  

Figure 1: Schematic representation of the process of gene editing 

MECHANISMS OF GENE THERAPY 

Gene therapy employs key mechanisms to modify or 

regulate genes for therapeutic benefit. These include 

gene addition, in which a functional gene is introduced to 

correct a deficiency, such as CFTR restoration in cystic 

fibrosis [18]. Gene editing, using tools like CRISPR to 

directly correct mutations, is applicable in sickle cell 

disease and thalassemia [19]. Gene silencing, which uses 

RNAi and ASOs to inhibit harmful gene expression [20]. 

Additionally, gene replacement restores proper function 

by replacing defective genes [21]. Gene therapy is 

broadly classified into somatic and germline approaches. 

Somatic therapy modifies non-reproductive cells and 

isn’t heritable. An example is Luxturna, which treats 

Leber’s congenital amaurosis by delivering the RPE65 

gene to retinal cells [22]. Germline therapy targets 

reproductive cells, with effects passed to offspring, but 

remains ethically contentious and banned in many 

countries [23].  Viral vectors—especially adeno-

associated viruses (AAVs), lentiviruses, and 

retroviruses—are common due to their cell-targeting 

capabilities. AAVs have demonstrated success in 

therapies such as Zolgensma for SMA [24], while 

lentiviruses and retroviruses offer genome integration 

but vary in their cell-type applicability [25-26]. Non-viral 

methods like lipid nanoparticles and electroporation are 

safer but less efficient [25-26]. This multifaceted 

therapeutic field continues to evolve, promising targeted 

interventions for genetic disorders across diverse clinical 

landscapes. Figure 2 presents a Stepwise illustration of 

gene therapy in the management of diseases [27]. 
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Figure 2: Stepwise illustration of gene therapy in the management of diseases, adapted from [27] 

Crispr application in the management of some genetic 

disorders: CRISPR technology has revolutionized genetic 

medicine by enabling precise editing of monogenic 

disorder conditions caused by mutations in a particular 

gene [28-29]. The procedure for CRISPR application is 

presented in Figure 3. Sickle Cell Disease (SCD) is caused 

by a point mutation in the hemoglobin subunit beta 

(HBB) gene, resulting in the production of abnormal 

hemoglobin (HbS) that causes the sickling of red blood 

cells [30]. Ex vivo CRISPR-Cas9 editing of hematopoietic 

stem cells (HSCs) has yielded promising clinical results 

[31]. Disrupting BCL11A boosts fetal hemoglobin (HbF), 

which reduces sickling [32]. Future methods may include 

in utero editing to prevent disease onset [33]. Cystic 

Fibrosis (CF) results from mutations in the CFTR gene, 

notably the ΔF508 mutation, which causes thick mucus 

and organ damage [34]. CRISPR in vivo editing targets 

lung cells using viral vectors or lipid nanoparticles [35]. Ex 

vivo approaches edit airway epithelial cells for 

reintroduction [36]. Prenatal interventions may prevent 

CF but pose ethical challenges. Duchenne Muscular 

Dystrophy (DMD) results from mutations in the DMD 

gene, which eliminates dystrophin and destabilizes 

muscles [37]. CRISPR enables exon skipping [38] or direct 

gene correction using AAVs [39]. Germline editing could 

block inheritance [40]. Huntington’s Disease (HD) is 

driven by CAG repeat expansion in the HTT gene, 

producing a toxic protein [41]. CRISPR can silence or edit 

only the mutant allele to halt progression [42-43]. 

Embryonic editing might prevent transmission [44]. 

CRISPR technology offers transformative solutions 

for managing both monogenic and polygenic disorders. 
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Leber Congenital Amaurosis (LCA) is caused by mutations 

in CEP290 and RPE65, leading to early-onset blindness 

[45]. In vivo CRISPR trials corrected retinal mutations 

[46], with AAVs used to deliver components [47]. Future 

prevention could involve embryonic editing [48]. Beta-

Thalassemia, due to HBB gene mutations, causes anemia 

[49]. CRISPR-corrected stem cells have restored red 

blood cell production [50] and increased fetal 

hemoglobin (HbF) offers symptom relief [51]. Germline 

editing may prevent inheritance [52]. Polygenic Disorders 

involve multiple genes and environmental triggers [52]. 

For Cardiovascular Disease, CRISPR has been used to 

knock out PCSK9, lowering cholesterol [53], and is also 

validating risk alleles [54]. In Type 2 Diabetes, gene 

editing enhanced insulin secretion via SLC30A8 [55]. In 

Alzheimer’s Disease, CRISPR converted harmful APOE4 

into protective APOE2 [56], and gene screens revealed 

new targets [57]. For Schizophrenia, GRIN2A knockouts 

clarified synaptic roles [58-59]. In Obesity, editing FTO 

improved metabolism [60], while MC4R editing showed 

therapeutic potential [61]. 

Figure 3: The procedures of CRISPR’s application in the treatment of polygenic disorders, adapted from [62] 

Application of CRISPR in the management of 

chromosomal disorders: Chromosomal disorders arise 

from structural or numerical abnormalities in 

chromosomes, leading to developmental, intellectual, 

and physical impairments. Common examples include 

Down syndrome, Turner syndrome, Klinefelter 

syndrome, and Cri-du-chat syndrome. CRISPR-Cas9 has 

created new possibilities for dealing with these complex 

conditions. Down Syndrome (Trisomy 21) results from an 

extra chromosome 21 [63]. CRISPR has been used to 

silence this copy via XIST activation [64], and to target the 

APP gene—linked to Alzheimer’s risk—in trisomic cells 

[65]. Turner Syndrome (Monosomy X) affects females 

with a single X chromosome [66]. Researchers are 

developing CRISPR strategies to boost expression on the 

remaining X [67] and correct heart-related defects [68]. 

Klinefelter Syndrome (XXY) involves an extra X 

chromosome in males, causing infertility and cognitive 

issues [69]. CRISPR has been used to reduce X-linked gene 

overexpression [70] and enhance spermatogenesis via 

SRY gene editing in mouse models [71]. Cri-du-chat 

Syndrome (5p deletion) causes cognitive and 

developmental challenges, named for a cat-like infant cry 

[72]. CRISPR has been shown to upregulate genes on the 

homologous chromosome [73], while neural progenitor 

cell editing elucidates its effects on brain development 

[74]. CRISPR applications offer targeted approaches for 

managing these complex chromosomal disorders. 

Chromosomal translocations and rearrangements, 

which involve abnormal reattachment of chromosome 

segments, can cause cancers like chronic myelogenous 

leukemia (CML) and developmental disorders such as 
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Jacobsen syndrome [75]. CRISPR technology offers 

targeted therapeutic strategies; in CML, CRISPR has 

successfully disrupted the BCR-ABL1 fusion gene 

resulting from a chromosome 9–22 translocation [76]. 

CRISPR’s precision has enabled somatic cell editing for 

sickle cell anemia, allowing blood cells to produce healthy 

hemoglobin [77], and for treating Leber congenital 

amaurosis, a genetic form of blindness [78]. However, 

human germline editing raises ethical issues, as seen in 

He Jiankui’s controversial embryo modification for HIV 

resistance [79]. Concerns include the rise of “designer 

babies” and societal inequities [80]. Equity remains a 

challenge—CRISPR therapies are expensive, limiting 

access for low-income populations [81-82]. Philosophical 

debates also linger over the distinction between 

enhancement and treatment, echoing past eugenic 

practices [79]. Regulatory frameworks vary globally, with 

some nations lacking oversight, which can lead to the risk 

of misuse [83]. Coordinated international governance is 

crucial to ensure the safe and ethical use of gene-editing 

technologies in treating genetic diseases. 

The role of nutrition in gene-editing outcomes: Genetic 

editing, particularly using CRISPR-Cas9, has significantly 

altered the treatment of genetically linked disorders such 

as sickle cell anaemia, cystic fibrosis, and certain types of 

cancer. However, nutritional status is crucial in regulating 

gene expression, cellular repair processes, and 

immunological responses that support the effectiveness 

of gene editing, so the success of these interventions 

depends on more than just molecular tools [84]. While 

nutrigenomics studies how nutrients affect gene 

expression, nutrigenetics examines how genetic variants 

influence an individual's response to nutrients. Folate 

and vitamin B12, for instance, are necessary for DNA 

methylation, which might change chromatin accessibility 

and affect the results of gene editing [85]. Cellular repair 

processes, including homology-directed repair (HDR) and 

non-homologous end joining (NHEJ), are essential to 

gene editing. Zinc, magnesium, and vitamin D are 

essential cofactors for enzymes that repair DNA. Reduced 

editing efficiency or off-target effects could result from 

deficiencies in several nutrients, which could also affect 

repair fidelity [86].  

Furthermore, dietary components can modify the 

immune responses that are produced by gene-editing 

vectors (such as viral delivery systems). The anti-

inflammatory properties of polyphenols and omega-3 

fatty acids may improve vector absorption and lessen 

immunological rejection [87].  Dietary factors can impact 

gene accessibility through epigenetic changes, including 

DNA methylation and histone acetylation [88]. For 

example, by altering chromatin structure, resveratrol and 

curcumin are known to modify histone acetylation, which 

may improve the accuracy of CRISPR targeting [89]. Gene 

editing provides a treatment option for monogenic 

illnesses such as phenylketonuria (PKU) [90]. Dietary 

control is still necessary both before and after editing, 

though, to maintain metabolic pathways. Antioxidant-

rich diets may also lessen oxidative stress in sickle cell 

disease, enhancing the cellular environment for gene 

correction [91]. There are still obstacles despite 

encouraging intersections. A significant amount of 

nutritional data is self-reported, which can lead to 

inaccuracies. Furthermore, interdisciplinary cooperation 

and a robust bioinformatics infrastructure are essential 

for integrating genetic and nutritional data into 

therapeutic procedures [92]. Creating databases of 

nutrient-gene interactions, standardizing nutritional 

guidelines for gene-editing candidates, and investigating 

the impact of microbiota on gene-editing results should 

be the main goals of future studies. In genetic scissoring, 

nutrition is more than just a background variable; it is a 

dynamic modulator that can enhance accuracy, reduce 

risks, and improve treatment outcomes [93]. 

Personalized diet will be crucial to maximizing the 
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promise of gene-editing technologies in the treatment of 

genetically associated disorders as they develop. 

CONCLUSION 

Gene scissoring represents a paradigm shift in the 

treatment of genetic diseases, offering unprecedented 

precision and the possibility of permanent cures. While 

significant advances have been made, particularly in the 

treatment of monogenic diseases and cancers, ongoing 

research and technological improvements are essential 

to overcome the existing challenges. With further 

refinement of gene-editing tools, increased accessibility, 

and a thoughtful approach to ethical considerations, 

gene scissoring holds the potential to become a 

cornerstone of modern medicine, profoundly altering the 

landscape of disease treatment in the coming decades. 
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