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ABSTRACT 

Mammalian gastrointestinal tract is inhabited by trillions of symbiotic microbiotas representing viruses, bacteria, archaea 

and eukaryotes including yeasts, fungi and protozoa. Compared to humans, the herbivores harbor a complex and 

metabolically efficient microbes which not only detoxify inadvertently consumed anti-nutritional phytochemicals, but 

also convert ingested tannin-polyphenols, saponins, phytoestrogens and alkaloids into metabolites which are more 

available and bioactive than their precursors. Some microbes detoxify toxicants and eliminate them from body. The 

resulting metabolites display a range of nutritional and therapeutic benefits besides their direct impact on enhancing 

diversity and functioning of the gut microbiome. Metabolically active gut microbiota and the metabolites generated 

might be the futuristic alternative biotherapeutics to develop nutraceuticals and plant-based health formulations 

primarily for ‘metabotype 0’ individuals. Further insights into novel microbial species, modes of microbial 

biotransformation of phytochemicals and botanicals will pave the way to develop futuristic non-antibiotic interventions 

to avert infections and boost human and veterinary health.  
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• Gut microbes and dietary phytochemicals prevent host against chronic diseases and infections.

• Little is known about metabolism and modes of action of the GI metabolites of botanicals and herbal

supplements.

• Gut microbial metabolites having anti-inflammatory, anti-oxidative and anti-carcinogenic properties might be

the futuristic therapeutics.

©FFC 2024.  This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 

License (http://creativecommons.org/licenses/by/4.0)  

INTRODUCTION 

Unlike humans and animals, the plants are devoid of 

movable cellular and humoral immune system, hence 

depend on innate mechanisms i.e., physical barriers and 

phytochemicals resulting from primary and secondary 

metabolism [1]. Indeed, phytochemicals help the plants 

to ward off phytophagy, predation and cope with 

pathogens, grazing animals, competitor plants, biotic and 

abiotic stresses.  During their passage through GI tract, 

the dietary components undergo physical, biochemical 

and microbial and hosts’ biocatalytic processes. 

Microorganisms and their enzymes present in intestinal 

tract act upon the dietary components and affect their 

size, molecular structure, bioavailability and activities in 

vivo. Phytochemicals and the resulting metabolites 

interact with cellular and molecular biological routes, 
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cellular multiplication, genomic replication, 

transcription, translation, metabolism, assorted signaling 

pathway cascades and energy metabolism (Figure 1). 

Plants, crops, vegetables, pulses, nuts and seeds are the 

prime sources of polysaccharides (cellulose, 

hemicellulose, pectin and starch), and phytometabolites 

like polyphenolic tannins, saponins, terpenoids, alkaloids 

and flavonoids etc. [2-3]. Therefore, phytochemicals are 

of interest to human and veterinary nutritionists, 

botanists and microbial biotechnologists. Indeed, 

alterations in phytochemicals’ bioactivities are attributed 

primarily to the gut microbial biocatalytic actions, thus 

underscores the significance of gut microbiota in 

digestion, and biotransformation of dietary components, 

herbal supplements and drugs. Methodically proficient 

intestinal and exogenously supplemented specialized 

microorganisms alter the properties of dietary 

components, health benefits from them, hence can boost 

benefits from raw ingredients which will benefit the 

persons categorized as ‘metabotype 0’ individuals. 

Overall, it is of top importance to develop evidence-

based data for qualitative production and bio-efficacy of 

functional foods as it is the long standing legacy of 

Functional Food Center [4-7].

Figure 1. Interaction and microbial biotransformation of some harmful chemicals and phytochemicals. GI microorganisms 

and host enzymes may enhance or reduce bioactivities of the ingested ingredients. Compared to monogastric species (e.g., 

humans, pigs and birds), the herbivores’ gut microbiota has strong metabolic activities. A- agricultural by-products, 

mycotoxins and agrochemicals; B- xenobiotics from petrochemicals released during transportation; and C-xenobiotics from 

pharmaceutical industry  

Gut microbial diversity and activities: The dwelling 

symbionts are indispensable to host. Herbivores depend 

solely on their gut microbes for nutrition and utilization 

of plant biomass consisting of high fiber and associated 
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phytochemicals which are toxic when taken in excess. As 

producers of potentially industrially useful enzymes viz., 

cellulases, pectinases, proteases, xylanases, phytases and 

tannases, several microorganisms have been reported 

from herbivores [8-9]. Similarly, human gut microbiota is 

a key player in digestive processes, detoxification or 

removal of anti-nutritional factors taken inadvertently 

with diet. Besides, GI microbes synthesize antimicrobial 

peptides (AMPs), types of bacteriocins, organic acids, 

primarily the short chain fatty acids (SCFAs), lipids, 

vitamins and amino acid metabolites possessing 

immunomodulatory, signal transducing and 

neurotransmission properties (Figure 2). Microorganisms 

in GI tract of herbivores are more powerful in terms of 

saccharolytic activities, production of SCFAs and 

oligosaccharides biosynthesis of microbial proteins from 

sources which are not utilized by humans and 

monogastric species.  

Figure 2. Gut microbial activities which lead to formation of a number of metabolites with diverse metabolic, physiological 

and biomedical effects. In addition, the microorganisms found in respiratory tract and women genitourinary tract are 

prominent sources of AMPs, antibiotics and bacteriocins.   

Abbreviations: AMPs- antimicrobial proteins, BCAA- 

branched chain amino acids; BSCFAs- branched short 

chain fatty acids; GABA- γ-aminobutyric acid; LPS- 

lipopolysaccharides; PAMPs- pathogen-associated 

molecular patterns; SCFAs- short chain fatty acids;  

Phytochemicals as therapeutics: Trees, plants and herbs 

are inexhaustible sources of raw materials for ethno 

medicine for millennia as well as commercial production 

of modern era therapeutics. Phytochemicals which range 

from simpler alkaloids to highly complex phytosterols 
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and polyphenolic tannins have variable biological 

properties and effects on health of an organism [10-11]. 

The general modes or mechanisms of plant-polyphenols 

action include binding with proteins and form insoluble 

tannin-protein complexes, disruption of host cell 

membrane, inhibition of uptake of nutrients into 

circulatory system, interruption of cell signaling 

processes, and obstruction of metabolism and 

endocrinological processes [12-13].  

Depending on molecular organization and 

conformation, polymerization, and the associated 

functional moieties, the phytochemicals exhibit different 

activities viz., anti-oxidative, anti-inflammatory, 

antimicrobial and anticancer [14-15], and prevention of 

metabolic disorders [16-17]. For instance, black 

raspberries, pomegranates and nuts containing high 

polyphenols, anthocyanin and vitamins have high anti-

inflammatory, anti-tumor and anti-cancer activities [18].  

Gut biotransformation of dietary components: Humans 

and animals have coevolved with microorganisms, also 

called as normal microflora which possess remarkable 

genetic and metabolic proficiencies. Dietary components 

are acted upon and transformed by microbial enzymatic 

activities during passage through alimentary canal. 

Hence, intestinal microorganisms and their metabolic 

pathways and enzymes are of substantial importance to 

microbial ecologists, nutritionists and industrial 

microbiologists [19-20].  

Sometimes, humans and animals may inadvertently 

consume toxicants including industrial chemicals and 

agrochemicals, also termed as xenobiotics through water 

and improperly preserved or contaminated foods. 

Mycotoxins and phytotoxins consumed through 

contaminated foods, milk, meat and eggs pose serious 

health threats. However, toxicity caused depends on 

several factors including types of toxicants, dose, GI 

detoxification and riddance from body. Intestinal and 

general probiotics- the bifidobacteria and lactic 

acidbacteria (LAB) eliminate certain mycotoxins and 

degrade phytotoxins, hence serve to alleviate the toxicity 

[21-22]. 

Degradation and utilization of dietary polysaccharides: 

Plant polysaccharides and non-digestible carbohydrates 

viz., cellulose, hemicellulose, and pectin), resistant 

starch, indigestible oligosaccharides such as fructo-

oligosaccharides non-digestible oligosaccharides like 

xylo-oligosaccharides, milk galacto-oligosaccharides are 

components of humans diets. These dietary components 

are metabolized with the help of bacteria, fungi and 

protozoa present in distal end of intestine. In humans and 

other monogastric species including carnivores, the 

minority of anaerobic bacteria, few fungi and protozoa in 

large intestine are key microorganisms to utilize dietary 

fiber [23-24].  

Oligosaccharides act as prebiotics to boost 

intestinal bacteria and introduced probiotics activities. In 

humans and other monogastric species including 

carnivores, the minority of anaerobic bacteria, few fungi 

and protozoa in large intestine utilize dietary plant 

polysaccharides and oligosaccharides [23-24]. Moreover, 

the age-related changes of gastric mucosa, its intrinsic 

factor and acid-peptic activity modification may 

represent further para-physiological interfering factors 

[25]. Peptides and SCFAs produced by intestinal bacteria 

interact with multiple enzymes and target cellular 

proliferation, epigenetic modification, angiogenesis and 
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carcinogenesis [26-27], and improve intestinal barrier 

[28]. Gut microbial metabolites including SCFAs, 

peptides, urolithins saponins and alkaloid metabolites 

are absorbed into systemic circulation and distributed to 

various tissues and organs. They interact with multiple 

key targets in cellular metabolic pathways that regulate 

cell proliferation, apoptosis, angiogenesis and 

metastasis, and contribute to prevent genotoxicity and 

ensuing colon cancer [26-27]. Of note, Clostridium cluster 

of phylum Firmicutes belonging to genera 

Anaerobutyricum, Anaerostipes, Coprococcus, 

Eubacterium, Faecalibacterium, Roseburia and 

Subdoligranulum metabolize dietary carbohydrates via 

butyryl-Co-A:Acetate CoA-transferase metabolic 

pathway and butyrate kinase terminal biocatalysis to 

synthesize butyrate [27]. Some amino acids are also 

metabolized in intestine to generate neuro-signaling 

molecules. 

The metabolites of dietary compounds are 

absorbed into systemic circulation and affect the 

enzymes involved in epigenetic gene regulation, such as 

DNA methyltransferases, histone acetyltransferases, 

deacetylases and demethylases or may alter expression 

of microRNAs [29].  Intestinal butyrate is a multipurpose 

bioactive metabolite which is used to generate energy by 

colonocytes, stabilize-hypoxia-inducible factors that 

promote anaerobic milieu in intestine, regulate Claudin-

1 and synaptopodin genes that maintain gut barrier. In 

addition, butyrate suppresses pro-inflammatory 

cytokines (IL-6 and IL-12), and oncogenic Akt/ERK, Wnt, 

and TGF-β signal transduction pathways [27]. 

Butyrogenic Roseburia spp. produce precursors of 

linoleic acid, and shikimic acid. The shikimate has anti-

carcinogenic effects in addition to regulation of NF-

kB/MAPK pathways and control of ulcerative colitis [27, 

30].  

DEGRADATION OF PHYTOCHEMICALS: 

Tannin-polyphenols: Tannin-polyphenols are among 

most abundant water-soluble polymeric metabolites 

with tendency to react with proteins and form insoluble 

tannin-protein complexes. Tannins are divided into two 

broad classes namely hydrolysable tannins (HTs) 

(gallotannins and ellagitannins) and condensed tannins 

(CTs) or proanthocyanidins (PAs).  

HTs or pyrogallol-type tannins are polyesters of α-

glucose at the centre and gallic acid and ellagitannins 

attached to sugars, which on heating with HCl or H2SO4, 

yield organic acids i.e., gallic acid and/or ellagic acid. 

Several plants including medicinal plants (e.g., Terminalia 

chebula, Phyllanthus emblica, Syzygium aromaticum and 

Castanea sativa), oaks (Quercus robur, Q. 

leucotrichophora, Q. petaea, Q. incana), and gall nuts 

(Quercus infectoria) contain HTs.  

On contrary, CTs are the polymers of flavans and 

contain no sugar moiety. When deoplymerized under 

oxidative milieu, they yield anthocyanidins, hence called 

as proanthyocaynidins.   

CTs are extensively studied plant metabolites with 

reference to their physiological and nutritional effects in 

humans. Size and molecular structures of tannin-

polyphenols determine their bioactivities, degradation in 

GI tract, and the metabolites generated (Figure 3). 

Due to their physiological, nutritional and pro-health 

attributes, CTs are most widely studied tannins [31]. 

However, size and molecular structure, intake, 

metabolism (Figure 3) and absorption into systemic 

circulation account for their bioactivities.  
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Figure 3. Metabolism of polyphenolic tannins and ellagitannins and generation of metabolites such as ellagic acid (EA) and 

urolithins. The metabolites are absorbed into circulatory system and exercise their effects.   

Intestinal and colonic bacteria metabolize tannins and 

generate metabolites known as urolihins. Urolithin A and 

urolithin B (hydroxyl-6H-dibenzo[b-d]pyran-6-one 

derivatives] have anti-carcinogenic effects [32], and act 

as antagonists of aryl hydrocarbon receptors [33]. Other 

microbial metabolites such as entrolignans and equol 

also have anti-cancer and anti-proliferative effects. 

Human fecal bacteria, namely Gordonibacter 

urolithifaciens and Gordonibacter pamelaeae belonging 

to Eggethellaceae family transform ellagic acid into 

urolithins and isourilithin A under anaerobic conditions 

[34]. Above strains have therapeutic importance as they 

can improve health benefits in ‘metabotype 0’ persons 

upon consumption of foods containing ellagitannins [34]. 
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Naturally existing microbial strains producing urolithins 

with anti-inflammatory, anti-carcinogenic and 

cardioprotective properties underscore the importance 

of human microbiota as probiotics and for commercial 

production of nutraceuticals and therapeutics [35-36]. 

Saponins: Saponins are detergent-like, triterpene 

glycosides, bitter tasting natural organic constituents of 

different medicinal, food crops and toxic plants. When 

shaken with water, the saponins form a stable foam and 

lyse red blood cells. Saponins have antimicrobial, anti-

protozoa, anticancer and medicinal effects.  Several 

legumes and spices contain multiple bioactive 

compounds including saponins, alkaloids and 

phytoestrogens [37]. Thus, saponins present in medicinal 

plants are widely studied for their metabolism and 

therapeutic effects. Panax ginseng and Panax 

notoginseng saponins (PNS) are widely studied saponins 

with reference to their therapeutic benefits and 

molecular biological mechanisms involved.    

 Ginseng has better cardioprotective, 

neuroprotective anticancer and anti-diabetic effects. 

Notoginseng is more effective in cerebrovascular 

diseases. Hence, it is necessary to unravel 

the metabolism and pharmacological activities 

of saponins and their interaction with the host. 

PNS are transformed to different forms including 

ginsenoside F1 (GF1), ginsenoside RG2 and ginsenoside 

compound K (GSK). The GSK is functional component of 

ginseng ginsenosides, and has various clinical 

applications including cartilage repair, alleviation of 

osteoarthritis [38-40], anti-inflammatory effects through 

inhibition of IL-10, IL-8 and IL-β [41], lowering of neuronal 

damage [42], and promotion of skin health [43].  

Mice intestinal bacteria were found to transform 

American ginseng (Panax quinquefolius L) ginsenosides 

to GSK (20-O-β-(D-glucopyranosyl)-20(S)-

protopanaxadiol) and ginsenoside Rg3. The study reveals 

the magnitude of intestinal microbiota in American 

ginseng-mediated treatment of colitis. Mice intestinal 

microbes transformed American ginseng saponins to Rb1 

and GSK which significantly attenuated experimentally-

induced colitis and associated symptoms i.e., abdominal 

pain, inflammation and pro-inflammatory cytokines 

levels in vivo in treatment group [44]. GSK was more 

effective against experimentally induced colitis [44]. 

Human and murine gut LAB and non-LAB such as 

bifidobacteria, Bacteroides thetaiotamicron, and 

Streptococcus thermophilus produce glycosidases such as 

β-D-glucosidase, α-L-rhamnosidase and β-D-xylosidase 

needed for deglycosylation of ginsinosides and synthesis 

of GSK [45-46]. Notably, enzymes and the procedural 

steps to prepare final compounds from ginsinosides are 

not equally efficient. Hence, emphasis is on increasing 

GSK synthesis by microorganisms [46-47]. Due to diverse 

therapeutic properties, the current emphasis is on 

increasing synthesis of GSK through chemical and 

biochemical approaches. In addition to intestinal 

microbial deglycolases, lactases, cellulases and β-

glucosidases from Aspergillus niger, Aspergillus oryzae, 

Penicillium spp., and Sulfolobus acidocaldarius are also 

used to increase synthesis of GSK from concerned 

precursors [45]
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    (A) 

(B) 

Figure 4. Intestinal metabolism of PPD type (A), and PPT type (B) Panax ginseng ginsenosides and generation of metabolites 

which are more active. Microbial metabolic pathways viz., deglycosylation and dehydration are observed for PPD-type 

ginseng saponins [19]. The PPD and PPT types have different sugar moieties at C-3/C-6 and C-20 in the aglycon. Compared 

to PPT group, PPD group triterpenoids are easily metabolized by the gut microbiota [16-17, 48-49].   

http://www.ffhdj.com/


Functional Food Science 2024; 4(3):96-118              FFS  Page 105 of 118

Estrogenic phytochemicals: Estrogenic phytochemicals, 

also known as phytoestrogens, are polyphenolic 

phytochemicals which have structural homology with 

human estrogens. Phytoestrogens are abundant in 

legumes such as subterranean clover (Trifolium 

subterranean), red clover (Trifolium pratense) and alfalfa 

(Medicago sativa) and fenugreek (Trigonella foenum-

graecum L.), lentils, peas, beans and pulses such chick 

pea (Cicer arietinum L.).      

There are multiple mechanisms by which 

phytoestrogens interact with humans and affect 

physiology. Due to their structural similarity to 

endogenous estrogens, the phytoestrogens interact with 

nuclear estrogen receptors, estrogen receptor β (ESR2), 

estrogen-related receptor γ (GPER1), oxytocin receptor 

(OXTR), prolactin receptor (PRLR), and various other 

enzymes involves in synthesis of sex hormones in vivo 

[37].  

Phytoestrogens and estrogenic isoflavones such as 

genistein improve gut metabolism, increase enteric 

microbial SCFAs [50], and prevent osteoporosis through 

regulating bone metabolism, reduce bone resolution, 

maintain bone density and prevent differentiation of 

osteoblasts [51]. Soy and soy products, and plants 

belonging to family Fabaceae are important components 

of human diet, and contain isoflavones. In legumes, the 

isoflavones exist as O-glycosylated, C-glycosylated or 

methylated forms. Glycosylated and methylated 

isoflavones are more hydrophobic, have high molecular 

weight, but are less estrogenic than respective 

precursors. They are poorly absorbed from intestine [52]. 

Enzymatic microbial conversion of isoflavanoes by 

intestinal LAB and bifidobacteria make them more active 

and absorbable [53-54].  Intestinal biotransformation of 

isoflavones is essential due to anticancer, 

cardioprotective and anti-cancer properties of the 

metabolites generated [50, 55-56]. Adlercreutzia 

equolifaciens [57-59], Asaccharobacter celatus [60-61], 

Slackia isoflavoniconvertens [62], and Slackia 

equolifaciens [63] produce equol from daidzein. 

Intestinal Adlercreutzia equolifaciens, Asaccharobacter 

celatus, Enterorhabdus mucosicola, 

Slackia isoflavoniconvertens, and Slackia equolifaciens 

produce equol isomers, the terminal metabolites of 

daidzein. Slackia isoflavoniconvertens produces 5-

hydroxyequol and 5-hydroxy-dehydroequol from 

isoflavone gensitein [62, 64]. Equol, resveratrol and 

urolihins have anti-neuroinflammatory and anticancer 

effects [65-66], hence have clinical and commercial 

applications.  

Microbial modification of isoflavones is essential as 

the metabolites generated are more bioactive and confer 

protection against chronic diseases such as cancer, 

osteoporosis, CVDs, and menopause [67]. Preliminary in 

vitro studies based on murine microglial cells indicate 

that equol possesses anti-neuroinflammatory effects, 

and therefore can have clinical role in neurodegenerative 

diseases. Three types of neuronal cells viz., microglia (BV-

2), astrocytes (C6), and neurons (N2a), were used to 

evaluate the neurological benefits of the equol. The 

equol was found to inhibit lipopolysaccharide (LPS)-

induced TLR4 activation, mitogen-activated protein 

kinase (MAPK) activation, NF-kB-mediated transcription 

of inflammatory mediators, production of nitric oxide 

(NO), release of prostaglandin E2 (PGE-2), secretion of 

tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), 

in LPS-activated microglia cells [68]. Isoflavones, 

ellagitannins and lignans metabolites have multiple 

clinical benefits such as protection from metabolic 

diseases and cancer. Therefore, intestinal bacteria which 

generate bioactive aglycones of isoflavones (daidzien, 

http://www.ffhdj.com/


Functional Food Science 2024; 4(3):96-118              FFS   Page 106 of 118 

genistein and glycitein) present in leguminous foods are 

of high interest [53-54, 69]. 

Alkaloids: Alkaloids are the naturally synthesized 

phytochemicals in several genera and species of plants 

used as medicine and herbs [70]. Morphine, piperine, 

quinidine, psilocin, cocaine and nicotine are prominent 

alkaloids in commonly encountered medicinal plants. 

Berberine (BBR) found in Berberis spp., Coptic chinensis, 

and Hydrastis canadensis is an alkaloid with diverse 

health implications.    

BBR exhibits notable health benefits by acting at 

cellular and molecular levels in vivo [70-72, 73], or 

modulates the intestinal microbiota to induce benefits in 

atherosclerosis [74]. Notably, absorption of ingested 

alkaloids into systemic circulation depends on their 

solubility in aqueous solutions or water. BBR absorption 

across intestinal epithelium is low due to its poor 

solubility in water. Intestinal Enterobacter cloacae and 

Enterobacter faecium are found to metabolize BBR to 

dihydroberberine (dhBBR), hence increase its absorption 

from intestinal lumen [75]. Studies from in vitro and 

model animals have shown that microbial metabolites of 

BBR metabolites confer health benefits including 

anticancer [3, 76], antidiabetic effects (anti-T2DM) 

through protection of pancreatic β-cells, increasing tissue 

sensitivity to insulin via GLUT-1, GLUT-4 and insulin type 

1 (Ins-1) receptor activity [77], ameliorate colitis 

symptoms prevent inflammatory responses by 

strengthening intestinal barrier [78-80].  BBR and its 

microbial metabolites are potential modulators of 

intestinal microorganisms which confer multiple health 

benefits [81-83] (Table 1).

  Table 1. Biotransformation of some phytochemicals during passage through gastrointestinal tract 

Phytometabolites  Microbial species Recommendation and inferences (references) 

A. Tannin-polyphenols

Ellagitannins 

(Combretum 

aculeatum) 

Mixed gut microbes 

Ellagibacter isourilithifacielns 

Synthesis and urolithin (D) 7-mediated 

antagonism against mycobacteria [94] 

Transformation of ellagitannins and EA into 

isourilithin A [95] 

EGCG Lactobacillus fermentum EGCG along with L. fermentum confers second 

generation synbiotic effect, anti-oxidative effects 

and modulation of immunity [96] 

Catechins Eggerthella lenta  

Flavonifractor plautii 

Transformation of catechins and epicatechins to 

5-(3,4-dihydroxyphenyl)-γ-valerolactone and 4-

hydroxy-5-(3,4-dihydroxyphenyl) valeric acid [97] 

Urolithins Dose-dependent activity of urolithin A and B, 

weaker estrogenic and strong ant-estrogenic 

activities [32] 

Urolithins (Uro-A, Uro-

B, Uro-C and Uro-D) 

Urolithin-mediated inhibition of cell proliferation 

and cell-cycle progressionat S and G2/M phases. 

Urolithin A was most effective [98]  

Ellagic acid Bifidobacterium pseudocatenulatum Transformation of EA to urolithins A and B [99] 

Ellagibacter isourolithinifaciens Formation of isourolithin A from EA [95] 

Gordonibacter sp. Multiple human gut More than one strains are involved in production 
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Phytometabolites  Microbial species Recommendation and inferences (references) 

strains (Eggerthellaceae family) of urolithin from EA [100] Complete conversion of 

EA into isourolithin-A [34] 

Enterocloster bolteae DSM 15670 

(Human-origin) 

Formation of urolithins (Uro-A and Uro-B from 

Uro-C and IsoUro-A, respectively), hence might 

have applications to produce functional foods, 

beverages and nutraceuticals [101] 

Quercetin Bacteroides fragilis, Clostridium 

perfringens Eubacterium ramulus, 

Lactobacillus spp. Streptococcus spp. 

Transformation of quercetin to metabolites with 

altered bioavailability and therapeutic properties 

[102] 

B. Estrogenic

phytochemicals  

Phytoestrogens 

(genistein, daidzein, 

resveratol, 

enterolactone) 

Colonic microbes Anti-proliferative activities, microbial metabolites 

found to be potential endocrine-disrupting 

molecules [32] 

Isoflavones Mixed human gut microflora Gut microbial transformation of phytoestrogens 

to O-desmethylangolensin,equol, urolithins and 

enterolactones [103] 

Leuconostoc citreum 

(Recombinant strain) 

Bioconversion of isoflavon glycosides into 

aglycons having more activity [104]  

Slackia equolifaciens 

(Human intestine) 

Production of equol from isoflavones [63] 

Limosilactobacillus mucosae 

INIA P508 and Bifidobacteria 

Bioconversion of isoflavones and formation of soy 

beverages containing bioactive aglycones 

daidzein and genistein [105] 

Formononetin, 

Biochanin A 

LAB, bifidobacteria Transformation of formononetin and biochanin A 

into daidzein, and genistein [106] 

Daidzein, and Daidzin 

and trans-polydatin 

Slackia isoflavoniconvertens 

(Human intestine) 

Bifidobacterium breve MTCC1274 

Formation of equol, and 5-hydroxy-equol from 

genistein and daidzein[107-108] B. breve 

MCC1274 promotes bioavailability of daidzein in 

the gut, improves absorption of isoflavones [109] 

Daidzein Enterococcus faecalis 

Lactobacillus rhamnosus 

Transformation of daidzein [54] 

Daidzein and 

chungkookjang 

(Fermented soy) 

Lactobacillus intestinalis L. intestinalis-mediated efficient production of

equol from daidzein and chungkookjang [67] 

C. Saponins

Penax notoginsengg Mixed gut microflora Transformation of PNS into GF1, GRH2, GSK and 

saponins (PNS) and PPT [12]  

P. ginseng Mixed rat gut microflora Formation of seven ginsinosides (ginsenosides 

Rg1,Re, Rf, Rb1, Rc, Rb2,and Rd), deglycosylated 

metabolites of K and Rh1, showinga differential 
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Phytometabolites  Microbial species Recommendation and inferences (references) 

pattern of metabolism of saponins [48] 

PD-type P.ginseng Bifidobacterium lactis 

L. rhamnosus HN001

Differential transformation ginsenosides.  L. 

rhamnosus transformed Rb1, Rc, and Rb2 into Rd. 

Bifidobacterium lactis transformed ginsenosides 

Rb1, Rc and Rb2 to Rd [110] 

American ginseng 

compounds 

Human gut micobiota GSK and Rg3 found to be major metabolites, 

attenuation of colitis, abdominal pain and gut 

inflammation. GSK had high anti- inflammatory 

effects [56] 

Ginsenosides (Rb1 and 

F2) 

Recombinant Escherichia coli (Bgy2 

genes from L. brevis) 

Transformation of Rb1 and F2 into Rd and GSK 

[111] 

Recombinant Escherichia coli 

BL21(DE3) 

(β-glucosidase from Flavobacterium 

johnsoniae) 

Optimization of conditions, and bioconversion of 

ginsenoside Rb1 and gypenoside XVII into 

ginsenosides Rd and F2 by recombinant 

bacterium [112] 

D. Alkaloids

Berberine Mixed gut microbiota Modulation of gut Akkermansia spp., anti- 

atherosclerotic and therapeuticaffects [81] 

Mixed gutmicrobiota Reduction in gut clostridia and their BSH activity, 

accumulation of TCA (Tian et al., 2019), activation 

of gut butyrogenic activities [71-72] 

Morphine (MO) model Mixed gut microbiota The study describes the negative consequences 

associated with use of opoids [113] 

MO, and MO-GSH 

adduct 

Mixed intestinal microbes Anaerobic conversion of MO and MO-GSH into 

[114] 

E. Dietary fiber (plant

polysaccharides) 

Plant polysaccharides Multiple bacteria (e.g., butyrogenic 

bacteria, Faecalibacterium, 

lactobacilli, and Roseburea) 

Multiple health benefits including regulation of 

immune system, anticancer [115-118], prevention 

of metabolic disorders [119-120], strengthening 

of intestinal barrier, and prevention of damage to 

intestinal barrier [121-122], regulation of energy 

metabolism  

Abbreviations:  BSH- bile salt hydrolase; DHMO- 

dihydromorphine; EA- ellagic acid; EGCG; GSK- 

ginsenoside compound K; MO-Morphine; MO-GSH- 

morphine glutathions; PNS- Penax ginseng saponins; PPT- 

protopanaxatriol; TCA- taurocholic acid 

14 weeks feeding of 0.5g/litre of BBR to Apoe-/- 

mice led to substantial increase in intestinal Akkermansia 

muciniphila, and reduced endotoxemia induced by fat-

enriched diets [81]. BBR reduces load and severity of 

intestinal colorectal tumorigenesis and cancer. Studies 

have shown that BBR modulates intestinal bacteria, 
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alleviates intestinal SCFAs viz., butyrate, acetate and 

propionate levels, upregulates occludin and ZO-1, and 

reduce fecal LPS load and colitis-associated CRC 

tumorigenesis [84]. The study concludes that BBR might 

be used as a novel approach and experimental basis to 

treat colitis-associated cancer CAC in clinical practices. 

Improving biotransformation and delivery of microbial 

metabolites: Phytochemicals, herbal beverages and 

drugs undergo metabolism in intestine and generate 

intermediates that are critically important to host. It 

implies that microorganisms are important to enhance 

bioavailability of raw plant ingredients. Poor aqueous 

stability, low absorption and the microbial efficiency to 

convert phytochemicals are major impediments in the 

use of nutrients and herbal ingredients. However, all 

individuals are not equally efficient to utilize 

phytochemicals and dietary nutrients. The persons who 

lack specific intestinal microorganisms fail to generate 

specific metabolites. The individuals are called as 

‘metabotype 0’. For instance, synthesis of equol from 

isoflavones is observed in 30-50% of human populations 

[85]. Alternative approaches such as polymeric 

nanoparticles, solid lipid nanoparticles, liposomes, liquid 

crystals and microemulsions are suggested to increase 

the stability and delivery of biotherapeutics.      

Bioengineering and genome-editing are the 

methods to enhance metabolic capacities of selected 

strains of microorganisms [86-87]. Recombinant 

Escherichia coli expressing daidzein reductase, 

dihydrodaidzein reductase, tetrahydrodaidzein 

reductase, and dihydrodaidzein racemose from human 

intestinal Slackia isoflavoniconvertens, enhanced (-)-5-

hydroxy-equol and 5-hydroxy-dehydroequol from 

isoflavone genstein [64].  

Similarly, Escherichia coli expressing β-glucosidase 

of Bifidobacterium breve ATCC15700 enhanced synthesis 

of GSK from ginsenoside F2, and was used for its 

commercial scale production [16-17]. Phytochemicals, 

for example, coloring agents, pigments, flavor agents, 

antioxidants, binders texturing agents are extensively 

used in food industry. Phytochemicals with anti-oxidative 

properties have applications in functional foods. 

Metabolic engineering has made possible the large scale 

production of botanicals and phytochemicals from 

inexpensive and recyclable effective sources [88].   

OUTLOOK AND CHALLENGES 

Microorganisms and their genes have emerged as a new 

frontier to understand the molecular biological basis of 

traditional medicines. Gut microbiota that activate or 

mediate transformation of ingested phytochemicals, 

herbal formulations or ethnomedicine should be 

investigated for use as novel probiotics and drug-delivery 

vehicles.   Herbivorous ungulates yield bacteria and fungi 

with multiple metabolic properties [89-91]. Although 

such bacteria and fungi may not be used as food 

supplements in humans, these microbial strains can be 

used to prepare products at commercial scale.   

Intestinal microorganisms and their metabolic 

efficacies are the emerging frontiers to understand 

interaction of nutraceuticals and herbal medicine with 

host and host microbiota. Microorganisms that activate, 

transform and improve bio-availability of nutraceuticals 

in herbal therapies or ethnomedicine could be the 

promising microbial additives or drug-delivery vehicles 

for ‘metabotype 0’ individuals as well as for commercial 

production of particular compounds. Selected 

microorganisms can be engineered or edited to enhance 

biotransformation of phytochemicals whose utilization is 

inefficient in vivo.      

Certain phytochemicals may have adverse effects in 

vivo. For instance, opioid alkaloids, morphine and their 

pharmacological derivatives may have adverse impact on 

gut-barrier, and cause inflammatory responses. β-

glycosidases of intestinal bacteroidetes, Firmicutes and 
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Actinobacteria breakdown amygdalin and release toxic 

HCN [92]. Nonetheless, the amount of HCN generated, 

half-life and absorption from intestinal surface are too 

less to cause toxicity [92]. Similarly, the non-protein 

amino acid, named as mimosine, present in certain 

protein-enriched forage plants such as Leucaena 

leucocephala (Lam.) de Wit (family Fabaceae) is 

converted by microbial enzymes to more toxic 

metabolites, namely 3,4-DHP and 2,3, DHP [93]. The 

microorganisms which promote availability and 

therapeutic efficiency of metabolites are the futuristic 

novel probiotics. Because inferences obtained about 

above therapeutic benefits of the herbal components 

and their metabolites are from model animals, their 

efficacy should be tested cautiously in humans.     

Despite constraints, there is increasing demand for 

functional foods owing to their proposed and claimed 

health benefits. Importantly, the dietary components 

affect composition and functioning of gut microbiota, 

and consequently the host health. Therefore, herbal 

formulations should be selected cautiously and as per 

standard guidelines, especially in health-conscious 

consumers (Martirosyan, 2023)  

CONCLUSION 

Lower intestinal tract is important organ for 

transformation of miscellaneous dietary elements and 

drugs and utilization of dietary polysaccharides, 

and transformation of nutrients. Intestinal bacteria 

modulate physiological processes such as enzyme 

activity, redox potential redox potential and signalling 

transduction by means of metabolites generated 

for dietary carbohydrates, amino acids and fats 

pathways. In addition, GI microbiota are crucial to 

degrade the inadvertently ingested harmful components 

and eliminate them from body. Several normal bacteria 

themselves have valuable therapeutic and probiotic 

properties. This way, the gut bacteria may enhance 

remedial benefits of phytochemicals in general by 

transforming them to metabolites that are biologically 

simpler and more active in vivo. However, thorough 

studies are necessary to revisit the bacteria and their pro-

health attributes inferred from in silico, in vitro and 

animal model-based inferences.    
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