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ABSTRACT 

Background: Brown rice (BR) has various beneficial effects. Recently, functional ingredient derived from processed BR 

(Kinmemai rice extract [KR-ex.]) has been developed in Japan, which reportedly decreases subjects’ “susceptibility to 

catching colds.” However, the effects of KR-ex. on the immune system remain unclear. 

Objective: This study aimed to examine the immunostimulant effects of KR-ex., focusing on the expression of activation 

markers and intracellular energy metabolic activity using human monocyte (U937)-derived macrophage cells. 

Methods: Cell activity was assessed using the gene expression of interleukin-1β and cyclooxygenase-2 as activation 

markers. The energy metabolic activity in mitochondria was evaluated using the expression of uncoupling protein 2 and 

the oxygen consumption rate, whereas that in glycolysis was evaluated using the expression of glucose transporter 1 and 

the amount of lactate released. 

Results: The results showed that the KR-ex. group had significantly higher expression of activation markers than the 

control group. Moreover, the KR-ex. group showed decreased mitochondrial metabolic activity and increased glycolytic 

metabolic activity compared to the control group. 
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Conclusions: These results suggest that KR-ex. activates human macrophages and promotes the shifting of the 

intracellular energy metabolism from the mitochondria to glycolysis. 

Keywords: Brown rice; Functional ingredient; Immunostimulant effect; Macrophage; Intracellular energy metabolism; 

Mitochondria; Glycolysis 
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INTRODUCTION 

Rice, identified by its scientific name Oryza sativa L., is 

among the top three important food crops and is consumed 

by over half of the world's population [1,2]. In Japan, there 

are two main types of rice being consumed: white rice (WR) 

and brown rice (BR). In WR, the germ and bran layer are 

removed, whereas in BR, only the husk is removed; 

moreover, BR primarily consists of the bran layer (6%–7%), 

germ (2%–3%), and endosperm (90%) [3]. Because the bran 

layer is rich in dietary fiber, minerals, phytochemicals, and 

vitamin B complex, BR has many health benefits compared 

with WR [4-6]. BR has also been reported to have 

antioxidative [7-10], cholesterol-lowering [10-12], 

antidiabetic [13-16], anticancer [17-19], anti-inflammation 

[20-22], and immune activity or modulatory effects [23-27]. 

However, many people dislike BR because of its taste and 

hard texture, which are attributed to the bran layer and wax 

layer (outer layer of the bran layer), respectively [3,28]. To 

address these issues, a rice milling technology (Saika-style 

rice polishing process) has been developed to produce 

dewaxed BR (DBR, BR without the wax layer) [29], which 

has improved water absorption, taste, and cooking 

methods while retaining its nutrients [24,30]. Moreover, a 

new type of rice called “sub-aleurone layer residual rinse-

free rice” has been produced through a special rice 

processing method that removes the bran layer and leaves 

the highly nutritious sub-aleurone layer (located between 

the bran layer and the starch layer), embryobase (“kinme”), 

and boundary with the endosperm [31]. This new type of 

BR, which has improved texture and taste, is known as 

“Kinmemai rice” in Japan. 
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In recent years, a functional ingredient (mature 

extract consisting of the sub-aleurone layer, blastema of 

the germ, and crushed cell group: Kinmemai rice extract 

[KR-ex.]) derived from BR has been developed and reported 

to decrease subjects’ “susceptibility to catching colds” [28]. 

The reason for this effect may be related to the immune-

active effects of BR; however, the relationship between the 

immunostimulant effects and KR-ex. remains unclear. If KR-

ex. is verified to have an immunostimulant effect, it is 

expected that many people will use it as a healthy food, 

contributing to a healthy society. 

The immune system includes both the innate and 

adaptive immune systems. The former is the first line of 

defense against various bacterial and viral infections and 

involves phagocytic cells such as macrophages and 

neutrophils [32]. Thus, the activation of the innate immune 

system is crucial to prevent the common cold. 

Recent studies have revealed that intracellular energy 

metabolism in the mitochondria and glycolytic system in 

macrophages is closely related to its phenotype: the 

activity of proinflammatory macrophages (M1) rely mainly 

on glycolysis, whereas the activity of anti-inflammatory 

macrophages (M2) rely mainly on the mitochondrial 

electron transport chain [33]. Drawing from these previous 

studies, we hypothesized that owing to the resistance to 

colds, KR-ex. shifts the energy metabolism of macrophages 

to a state of high foreign body elimination capability, which 

increases M1 activation markers. To test this hypothesis, 

this study was conducted to examine whether KR-ex. has 

an active effect on the innate immune system, focusing on 

the expression of active markers and intracellular energy 

metabolism activity in the mitochondria and glycolysis 

related to the activation of macrophages using 

macrophage-like cells differentiated from monocyte-strain 

cells. In addition, the active effects of KR-ex. on 

macrophages were compared with those of the bran layer 

and endosperm. 

METHODS 

Cell line: The human monocyte cell line (U937 cells) was 

purchased from the European Collection of Authenticated 

Cell Cultures (Wiltshire, UK). They were maintained in 

RPMI-1640 medium with L-glutamine and phenol red 

(FUJIFILM Wako Pure Chemical Corporation, Osaka, Japan) 

supplemented with 10% fetal bovine serum (Moregate 

BioTech, QLD, AU), penicillin (100 U/mL), and streptomycin 

(100 μg/mL) at 37°C in a 5% CO2/95% air humidified 

atmosphere. The cells were differentiated into 

macrophage-like cells using 25 ng/mL of phorbol 12-

myristate 13-acetate (PMA) (Sigma-Aldrich, MO, USA) for 

72 h. Thereafter, they were cultured in a medium without 

PMA for 48 h. These methods were based on previous 

reports [34,35]. PMA only-stimulated macrophage is an 

inactive phenotype (M0) [36]. 

BR samples: BR samples (bran layer, KR-ex., and 

endosperm) were kindly provided by the Toyo Rice 

Corporation in crushed powder form. The bran layer and 

endosperm were removed during the production of KR-ex. 

A 3.5-g sample of KR-ex. product contains 292.3 mg of 

phytic acid, 7.95 mg of γ-aminobutyric acid (GABA), 6.65 

mg of γ-oryzanol, and 149.1 μg (estimated value) of 

lipopolysaccharide (LPS) [28]. One gram of each sample 

was dissolved in 10 mL of distilled water, heat-treated with 

stirring (95°C, 1 h, 300 rpm), and then filtered through a 

0.45-μm filter (100 mg/mL of each sample). These samples 

were additionally diluted with water/culture medium to 

obtain six different concentrations (3.33, 10, 33.3, 100, 333, 

and 1000 μg/mL). 

Reagents: LPS was purchased from Macrophi Inc. (Kagawa, 

Japan). The Seahorse XFp Cell Mito Stress Test Kit 

containing oligomycin, carbonyl cyanide-p-

trifluoromethoxyphenylhydrazone (FCCP), and antimycin 

A/rotenone was purchased from Agilent Technologies (CA, 

USA). 
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Cell viability assay: U937 cells were seeded onto a 96-well 

plastic plate (1.25 × 104 cells/well). They were treated with 

25 ng/mL of PMA using the above methods to induce 

differentiation into macrophage-like cells. After treatment 

with sterilized water (control), 1 μg/mL of LPS (positive 

control), or each sample of BR for 24 h, the cell viability was 

examined based on the increase in cytosolic lactate 

dehydrogenase (LDH) concentration in the supernatant 

using the Cytotoxicity LDH Assay Kit-WST (Dojindo 

Molecular Technologies Inc., Kumamoto, Japan). The assay 

was conducted in accordance with the protocols of the 

manufacturer, and the results are given as a percentage of 

the control. 

Total RNA isolation, reverse transcription, and real-time 

polymerase chain reaction (PCR): The mRNA expression of 

interleukin (IL)-1β, cyclooxygenase (COX)-2, uncoupling 

protein 2 (UCP2), and glucose transporter 1 (GLUT1) was 

measured by quantitative real-time reverse transcription 

PCR (qRT-PCR) using specific primers (Table 1). Total cellular 

RNA was extracted and purified from U937 cells using the 

NucleoSpin® TriPrep kit (Macherey-Nagel, Dueren, 

Germany) in accordance with the manufacturer’s 

instructions. Four hundred nanogram of total RNA was 

used for first-strand cDNA synthesis at a final volume of 10 

μL using the PrimeScript® RT Master Mix (TaKaRa, Shiga, 

Japan). One microliter of cDNA (equivalent to 40 ng) was 

amplified by PCR using the Power SYBR® Green PCR Master 

Mix (Life Technologies, CA, USA) on a QuantStudio7 Real-

Time PCR System (Applied Biosystems, MA, USA). The 

reaction protocol was as follows: 95°C for 20 s, with 45 

cycles (95°C for 3 s and 60°C for 30 s). The relative gene 

expression levels were assessed using the ddCt method and 

normalized to the expression of the housekeeping gene 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

Table 1. Real-time PCR primers. F, forward; R, reverse. 

Gene Sequence (5′→ 3′) References 

IL-1β F: GCCATGGACAAGCTGAGGAAG 

R: GTGCTGATGTACCAGTTGGG 

37 

COX-2 F: TGCAGTGAGCGTCAGGAG 

R: CAAGGATTTGCTGTATGGCTGAG 

38 

UCP2 F: CTACAGCCAGCGCCCAGTA 

R: TCAGTACGCACCATGGTCAGA 

39 

GLUT1 F: TTGCAGGCTTCTCCAACTGGAC 

R: CAGAACCAGGAGCACAGTGAAG 

40 

GAPDH F: GAAGGTGAAGGTCGGAGTC 

R: GAAGATGGTGATGGGATTTC 

41 

Mitochondrial stress test: U937 cells were seeded onto an 

eight-well plastic plate (5.0 × 104 cells/well, Agilent 

Technologies) and treated with 25 ng/mL of PMA using the 

above methods. After treatment with sterilized water, LPS, 

or KR-ex. for 24 h, the culture medium was removed and 

substituted with the XF RPMI Medium without phenol red 

(Agilent Technologies) comprising 10-mM glucose, 1-mM 

pyruvate, and 2-mM glutamine. Subsequently, the 

cellswere incubated for 1 h at 37°C without CO2. Next, 15-

μM oligomycin (1.5 μM final), 5-μM FCCP (0.5 μM final), 

and 5-μM antimycin A/rotenone (0.5 μM final) were loaded 

into injection ports A, B, and C of the XFp Sensor Cartridge 

(Agilent Technologies), respectively, in accordance with the 

manufacturer’s protocols. The oxygen consumption rate 

(OCR) was measured with the XF HS Mini Analyzer (Agilent 

Technologies) using the Mito Stress Test Kit standard 

protocol. 
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Lactate release assay: U937 cells were seeded onto a 12-

well plastic plate (1 × 106 cells/well) and treated with 25 

ng/mL of PMA using the above methods. After treatment 

with sterilized water, LPS, or KR-ex. for 24 h, the 

supernatants were collected. The amount of lactate in the 

supernatants was measured using the Lactate Assay Kit-

WST (Dojindo Molecular Technologies Inc.) in accordance 

with the manufacturer’s recommended protocols. 

Statistical analysis: All experiments were replicated at least 

three times. All data are presented as mean ± standard 

deviation of the mean. The cell viability and expression of 

activation markers (IL-1β, COX-2) for determining the 

experimental concentrations of KR-ex. were analyzed using 

one-way analysis of variance (ANOVA) followed by 

Dunnett’s post hoc test. Comparisons of the expression of 

activation markers, UCP2, GLUT1, and lactate release assay 

among BR samples were analyzed using one-way ANOVA 

followed by Bonferroni post hoc test. The Mito Stress Test 

was assessed using Student’s t-test between two groups. P-

values of 0.05, 0.01, or 0.001 were considered to denote a 

statistically significant difference. All statistical analyses 

were performed using R statistical software version 4.2.2. 

RESULTS 

Determination of KR-ex. experimental concentrations: 

The cytotoxic concentration of KR-ex. was first determined 

using cell viability assay to determine the experimental 

concentration of KR-ex. Figure 1a shows no differences in 

cell viability at 3.33–1000 μg/mL of KR-ex. compared with 

control. 

Subsequently, the mRNA expression of IL-1β and COX-

2 as activation markers of macrophages was examined to 

assess the stimulatory effects of KR-ex. to macrophage-like 

cells at each concentration. Figures 1b and c show that the 

expression of activation marker genes was significantly 

higher in LPS-treated macrophage-like cells (LPS group) 

than in the control group. Moreover, the expression of 

these genes in the KR-ex. group increased in a 

concentration-dependent manner. Specifically, the 

expression of IL-1β at ≥100 μg/mL and COX-2 at ≥333 

μg/mL of KR-ex. was significantly higher than that of the 

control. 

Based on these results, the following experimental 

concentrations of KR-ex. were used: 100, 333, and 1000 

μg/mL.

Figure 1. Determination of the experimental concentration of Kinmemai rice extract (KR-ex.). (a) U937-derived macrophages were 

incubated for 24 h after treatment with sterilized water, LPS, or KR-ex., and the cell viability was assessed using the LDH release assay (n = 4). (b, c) The 

cells were treated with LPS or KR-ex. for 24 h, and total RNA was then collected. The gene expression levels of IL-1β and COX-2 were analyzed using real-

time PCR and expressed as ∆∆Ct (n = 3). Cntrl denotes cells treated with sterilized water; LPS denotes cells treated with 1 μg/mL of LPS; KR-ex. denotes 

cells treated with each concentration of KR-ex. NS, not significant; **p < .01; ***p < .001. 
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Comparison of the immunostimulatory effects among BR 

samples: The gene expression of macrophage activation 

markers was examined to compare differences in 

immunostimulatory effects among BR samples. Figure 2a 

shows no differences in cell viability at 333–1000 μg/mL of 

bran layer or endosperm compared with the control. 

Similar to the KR-ex. group, the expression of activation 

markers in the bran layer group increased in a 

concentration-dependent manner. However, the bran layer 

group had slightly lower expression levels than the KR-ex. 

group (Figures 2b and c). 

Alternatively, the expression levels in the endosperm 

group were significantly lower than those in the bran layer 

and KR-ex. groups at ≥333 μg/mL. Moreover, there were no 

observed significant differences in IL-1β and COX-2 

expression between the endosperm group and control 

group. 

Figure 2. Comparison of the active effects on macrophages among brown rice (BR) samples. (a) 

U937-derived macrophages were incubated for 24 h after treatment with sterilized water, LPS, bran layer, or endosperm, 

and cell viability was assessed using the LDH release assay (n = 4). (b, c) The cells were treated with LPS or BR samples for 

24 h, and total RNA was then collected. The gene expression levels of IL-1β and COX-2 were analyzed using real-time PCR 

and expressed as ∆∆Ct (n = 3). Cntrl denotes cells treated with sterilized water; LPS denotes cells treated with 1 μg/mL of 

LPS; BR denotes cells treated with each BR sample. NS, not significant; ***p < .001; †p < .05 vs. Cntrl. 

Expression of genes related to intracellular energy 

metabolism in BR-treated cells: Figure 3a shows that the 

expression of UCP2 was significantly lower in the LPS or BR 

sample groups than in the control group. In particular, the 

bran layer or KR-ex. group showed significantly decreased 

expression of UCP2 compared with the endosperm group.

By contrast, the LPS group had increased expression of 

GLUT1 compared with the control group. However, no 

significant differences were observed (Figure 3b). The 

expression of GULT1 in the BR sample groups was 

significantly higher than that in the control group, and the 

KR-ex. group showed the highest expression level of GLUT1. 
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Figure 3. Mitochondrial and glycolytic energy metabolism-related genes expression in 

macrophages treated with each BR sample. U937-derived macrophages were incubated for 24 h 

after treatment with sterilized water, LPS, or each BR sample, and total RNA was then collected. The gene 

expression levels of (a) uncoupling protein 2 (UCP2) and (b) glucose transporter 1 (GLUT1) were analyzed 

using real-time PCR and expressed as ∆∆Ct. Cntrl denotes cells treated with sterilized water; LPS denotes 

cells treated with 1 μg/mL of LPS; BR (Brown Rice) denotes cells treated with each BR sample. n = 3; *p 

< .05; **p < .01; ***p < .001; †p < .05 vs. Cntrl. 

Effects of KR-ex. on mitochondrial and glycolytic 

metabolism in macrophage-like cells: The OCR and 

amount of lactate released were measured using the Mito 

Stress Test and lactate release assay, respectively, to 

examine the effects of KR-ex. on mitochondria and 

glycolytic energy metabolism. 

Figure 4a shows no differences in basal and maximum 

respiration between the LPS group and the control group. 

However, the LPS group tended to show decreased basal 

and maximum respiration compared with the control group. 

By contrast, the KR-ex. group showed significantly 

decreased basal and maximum respiration compared with 

the control group (Figure 4b). On the other hand, the 

amount of lactate released from cells treated with LPS or 

KR-ex. was significantly higher than that of the control 

(Figure 5).
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Figure 4. Assessment of mitochondrial energy metabolic activity using Mito Stress Test. 

U937-derived macrophages were incubated for 24 h after treatment with sterilized water, LPS, or KR-ex. The 

oxygen consumption rates (OCRs) of samples were measured using the XF HS Mini Analyzer. Final concentration 

of each reagent: 1.5-μmol/L oligomycin (Oligo), 0.5-μmol/L carbonyl cyanide-p-

trifluoromethoxyphenylhydrazone (FCCP), and 1-μmol/L antimycin A and rotenone (AntA/Rtn). Respiratory 

parameters: Basal and Maximum denote basal respiration and maximum respiration, respectively. (a) 

Comparison between the Cntrl and LPS group. (b) Comparison between the Cntrl and KR-ex. group. Cntrl denotes 

cells treated with sterilized water; LPS denotes cells treated with 1 μg/mL of LPS; KR-ex. denotes cells treated 

with 1000 μg/mL of KR-ex. n = 3; *p < 0.05. 

Figure 5. Assessment of glycolytic energy metabolic activity using lactate release assay. 

U937-derived macrophages were incubated for 24 h after treatment with sterilized water, LPS, or KR-ex. The 

amount of lactate released from samples was quantified by measuring the absorbance at 490 nm using the 

lactate release assay kit. Cntrl denotes cells treated with sterilized water; LPS denotes cells treated with 1 μg/mL 

of LPS; KR-ex. denotes cells treated with 1000 μg/mL of KR-ex. n = 3; **p < .01, ***p < .001.  
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DISCUSSION 

This study examined whether a functional ingredient 

derived from KR-ex. activates human macrophage-like cells, 

focusing on the expression of macrophage activation 

markers and the effects on intracellular energy metabolism 

between mitochondria and glycolysis. 

In the KR-ex. group, the expression of macrophage 

activation marker genes (IL-1β and COX-2) increased in a 

concentration-dependent manner (Figure 1). It was 

assumed that 333 μg/mL of KR-ex., which significantly 

activates macrophage cells, contains approximately 14.19 

ng of LPS because KR-ex. contains 149.1 μg of LPS in each 

packet (3.5 g, estimated value) [28]. Previous studies have 

reported that LPS extracted from various plants activates 

macrophages [24, 42,43]. Inagawa et al. reported that DBR 

extracted using hot water contains LPS, which activates 

RAW264.7 cells (mouse macrophage-like cell line) via Toll-

like receptor 4. They further demonstrated that more than 

1 mg/mL of DBR (equivalent to approximately 6.4 ng/mL of 

LPS) increased nitric oxide (NO) production in macrophage 

cells [24]. These studies suggest that LPS is mainly 

responsible for the active effect of KR-ex. on human 

macrophage-like cells. 

In addition, the expression of activation markers 

among BR samples (bran layer, KR-ex., and endosperm) was 

compared to examine differences in the active effects on 

macrophages. The bran layer has been reported to be rich 

in LPS [44]. However, polished rice extracts have very low 

LPS content (0.037 μg/g), and NO production could not be 

detected in macrophages [24]. Figures 2b and c show that 

the bran layer removed from Kinmemai rice had increased 

expression of activation markers, but not the endosperm. 

These results are consistent with those of previous studies. 

Subsequently, the intracellular energy metabolic 

activity between mitochondria and glycolysis was 

examined to investigate the active effects of KR-ex. on 

macrophages in more detail. There are two subtypes of 

macrophages: M1 and M2. M1 macrophages are activated 

by interferon-γ or LPS stimulation and initiate innate 

immunity by releasing proinflammatory cytokines. By 

contrast, M2 macrophages are activated through exposure 

to certain cytokines (e.g., IL-4 or IL-10) and suppress 

immune response [45]. Therefore, the PMA-stimulated 

macrophages in the present study fall into the M1 type. M1 

macrophages was reported to rely mainly on glycolysis and 

impair the tricarboxylic acid cycle and mitochondrial 

oxidative phosphorylation [34]. UCP2 is a mitochondrial 

anion carrier protein that is crucially involved in energy 

metabolic regulation in various cells [46-48]. GLUT1 mainly 

contributes to basal glucose uptake and enhances glycolysis 

[49,50], which is crucial in energy metabolism and is related 

to the metabolic reprogramming of macrophages [51,52]. 

Thus, the expression levels of UCP2 and GLUT1 genes were 

assessed to examine the activity of mitochondrial and 

glycolytic energy metabolism among the groups, 

respectively. 

 Figure 3 shows that the expression of GLUT1 

increased in a concentration-dependent manner in the 

bran layer and KR-ex. groups, whereas the expression of 

UCP2 was low (plateau at 333 mg/mL). Hence, these results 

suggest that the bran layer and KR-ex. may activate 

macrophages by shifting intracellular energy metabolic 

activity from mitochondria to glycolysis. Moreover, the 

down-expression level of UCP2 in the bran layer and KR-ex. 

groups were the same, whereas the expression level of 

GLUT1 in the KR-ex. group was greater than that in the bran 

layer group. These results were one of the reasons why the 

KR-ex. group had higher expression levels of activation 

markers than the bran layer group (Figure 2). 

In addition, the expression of GLUT1 in the 

endosperm group tended to be higher than that in the LPS 

group. Dey et al. reported that high-glucose conditions 

induced GLUT1 protein expression on the membrane of 

renal cells via microRNA-21 expression [53]. Thus, the 

glucose in the endosperm may be one of the reasons that 

increased GLUT1 expression. 
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The Mito Stress Test and lactate release assay were 

performed to further examine the energy metabolic 

activity of 1000 μg/mL of KR-ex. with the lowest expression 

of UCP2 and the highest expression of GLUT1. The OCRs in 

the KR-ex. group were significantly decreased compared 

with those in the control group (Figure 4a). In addition, the 

OCR in LPS-treated cells tended to be lower than that in the 

control group, although there were no significant 

differences (Figure 4b). Moreover, the amount of lactate 

released in the KR-ex. group was significantly higher than 

that in the control group and tended to be higher than that 

in the LPS group (Figure 5). These results suggest that KR-

ex. efficiently shifts energy metabolic activity from 

mitochondria to glycolysis in macrophages. However, these 

findings are not in agreement with the results, where the 

gene expression of activation markers was lower in the KR-

ex. group than in the LPS group (Figures 1b and c). Various 

components in BR have been reported to inhibit the 

production of inflammatory factors in LPS-stimulated 

macrophages, and these anti-inflammatory effects are 

caused by γ-oryzanol, phenolics, and GABA in BR [22, 54-

56]. Based on these findings, in macrophages without LPS 

stimulation, various components in KR-ex. may efficiently 

shift energy metabolic activity to glycolysis while regulating 

it so that it does not induce excessive expression of 

inflammatory factors. In other words, KR-ex. may put 

macrophages in a state of readiness for activity so that they 

can be activated quickly (a primed state). To prove this 

hypothesis, the effects of KR-ex. on anti-inflammatory 

profiles and energy metabolic activity in LPS-stimulated 

macrophages should be examined. Moreover, studies using 

samples that have had the endogenous LPS in KR-ex 

removed or LPS-unresponsive macrophages should be 

conducted in the future. Because in vitro experiments to 

verify direct effects have limited ability to validate the 

effects of KR-ex on the immune system of complex 

organisms, future clinical studies in vivo using human blood 

samples are required to better demonstrate the effects of 

KR-ex. 

CONCLUSIONS 

Kinmemai rice extract can activate human macrophage-like 

cells and promote shifting intracellular energy metabolism 

from mitochondria to glycolysis, these findings support our 

hypothesis. Moreover, Kinmemai rice extract exhibit 

greater effects compared with the bran layer or endosperm. 

The findings may explain why Kinmemai rice extract can 

decrease subjects’ “susceptibility to catching colds.” This 

study may enable consumers to consume functional 

ingredients such as brown rice with more confidence and 

peace of mind. Our research is expected to contribute to 

the extension of healthy life expectancy and further 

reduction of medical costs by improving health through the 

active consumption of Kinmemai rice extract by each 

individual. 
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aminobutyric acid; GLUT1, glucose transporter 1; IL-1β, 

interleukin-1β; KR-ex., Kinmemai rice extract; LDH, lactate 

dehydrogenase; LPS, lipopolysaccharide; OCR, oxygen 

consumption rate; PMA, phorbol 12-myristate 13-acetate; 

UCP2, uncoupling protein 2 
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