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ABSTRACT 

Background: Grapevine (Vitis vinifera L.) is a globally important perennial fruit crop, renowned for its economic value 

and cultural significance. Grape leaves, while often underappreciated, play a vital role in culinary traditions and are 

valued for their cultural, nutritional, and health benefits. However, the availability of grape leaves is constrained by 

viticulture practices and chemical treatments that prioritize fruit production over leaf harvesting. This study seeks to 

compare the biochemical characteristics of grapevine leaves from the cultivar 'Deghin Yerevani' grown from virus-free, 

tissue-cultured plants under aeroponic and soil conditions within a greenhouse.  
 

Objective: To evaluate the impact of aeroponic versus soil-based cultivation and the application of specific growth 

regulators on the biochemical composition and nutrient content of 'Deghin Yerevani' grapevine leaves, with the goal of 

optimizing conditions for high-quality leaf production. 
 

Materials and Methods: This study, conducted from 2021 to 2023 at the Scientific Center of Agrobiotechnology, ANAU, 

utilized virus-free in vitro plants of Vitis vinifera L. cv. 'Deghin Yerevani', sourced from the National Grape Field Collection. 

Plants were cultured in four treatment groups with varying growth media compositions: PGR-free, with Indole-3-acetic 
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acid (IAA), with IAA and Gibberellic acid (GA₃), and with IAA, GA₃, and 6-Benzylaminopurine (BAP). Post-culturing, plants 

were transferred to either an aeroponic system, which used a misting cycle and maintained controlled environmental 

conditions, or to a greenhouse with a defined soil mix and monitored moisture levels. Both systems operated for 8 weeks, 

with each treatment replicated three times. Chlorophylls a and b, ascorbic acid, sugars, and macro- and micronutrient 

contents were analyzed, and statistical significance was determined using standard error and Student’s t-test (p < 0.05). 
 

Results: Grapevine leaves from 'Deghin Yerevani' plants grown in aeroponic systems exhibited significantly higher 

chlorophyll a, chlorophyll b, and total chlorophyll compared to those grown in soil. Growth regulators, particularly IAA, 

GA3, and BAP, enhanced chlorophyll content, sugar levels, and Vitamin C across both cultivation methods. Aeroponic 

systems showed superior results with increased sugar content (5.7 g/100g) and Vitamin C (20.4 mg/100g) compared to 

soil-based cultivation. Nutrient analysis revealed higher levels of nitrogen, phosphorus, potassium, calcium, and 

magnesium in aeroponics. Overall, growth regulators and aeroponic cultivation improved the biochemical and nutrient 

profiles of grapevine leaves. 
 

Conclusion: The study demonstrated that aeroponic cultivation and the application of growth regulators significantly 

enhanced the biochemical composition of grapevine leaves. Higher levels of chlorophyll, sugar, and Vitamin C, along with 

improved nutrient content, were observed in aeroponic systems compared to soil-based cultivation. These findings 

underscore the benefits of aeroponics and growth regulators in optimizing grapevine leaf quality, suggesting potential 

for improved yield and nutritional value in grapevine production. 
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INTRODUCTION 

Grapevine (Vitis vinifera L.) is a globally significant 

perennial fruit crop, widely cultivated for its economic 

value and cultural importance [1-3]. Having been 

cultivated for thousands of years, grapes are not only 

consumed fresh but are also the foundation for various 

products, including wine, juice, and dried fruits [4]. 

Grape leaves, though often overlooked, hold 

substantial value in culinary traditions, prized for their 

cultural, nutritional, and health-related benefits [5-6]. 

They are especially known for their use in dolmas, a 

traditional dish where the leaves are stuffed with a 

mixture of rice, herbs, and sometimes meat, with 

variations found across many cultures. Additionally, 

grape leaves are used to wrap foods like fish, cheese, or 

vegetables before grilling or baking, adding a subtle, 

earthy flavor to these dishes [7]. 

Despite their culinary significance, the availability of 

grape leaves is limited due to viticulture practices and 

chemical treatments that prioritize fruit production [8]. 

While freshly harvested leaves are preferred, the 

removal of young shoots to enhance grape quality 

reduces their availability. Nevertheless, grape leaves are 

recognized for their nutritional value and potential health 

benefits [9]. 

In regard to nutrition, grape leaves are low in 

calories but rich in essential nutrients, such as vitamins 

A, C, and K, as well as fiber, calcium, and iron. They 

contain biochemical compounds such as polyphenols, 

flavonoids, and phenolic acids, which are known for their 

antioxidant, anti-inflammatory, and anti-cancer 

properties [10-11]. These bioactive compounds play a 

critical role in combating oxidative stress, supporting 

bone health, and boosting immune function, thereby 

contributing to the prevention of chronic diseases [12-

14] 

The concept of functional foods, which provide 

health benefits beyond basic nutrition, is largely based on 

the presence of bioactive compounds. These compounds 

are essential in preventing or managing chronic diseases 

through various physiological mechanisms [15-17]. 

Recent research has increasingly focused on optimizing 

the production and concentration of these beneficial 

compounds through advanced cultivation techniques 

[18]. The biochemical quality of grapevine plants is 

influenced by genetic, environmental, and cultivation 

factors [19-21]. 

Advances in horticultural practices, such as in vitro 

micropropagation and controlled environment 

cultivation, have opened new avenues for enhancing the 

biochemical quality of grape crops. One area of 

significant interest is the role of plant hormones in this 

process. Hormonal treatments can greatly influence both 

the propagation efficiency and the biochemical 

composition of grapevines [22]. Understanding the 

impact of different plant growth regulators on the 

synthesis of bioactive compounds is crucial for improving 

grapevine productivity and health benefits [23]. 

Tissue culture and aeroponic systems are advanced 

cultivation methods that provide controlled 

environments conducive to promoting plant growth and 

enhancing leaf quality. Tissue culture offers a sterile, 

disease-free propagation system that ensures the 

preservation of consistent genetic traits [24-29]. In 

contrast, aeroponic systems deliver nutrients directly to 

plant roots in a mist or air environment, facilitating 

optimal nutrient uptake and growth [30]. 

This study aims to compare the biochemical 

characteristics of grapevine leaves from the cultivar 

'Deghin Yerevani', derived from virus-free, tissue-

cultured plants grown in aeroponic versus soil conditions 

within a greenhouse.  

The goal is to evaluate the impact of aeroponic 

versus soil-based cultivation and the application of 

specific growth regulators on the biochemical 

composition and nutrient content of grapevine leaves 

from the 'Deghin Yerevani' cultivar, with the goal of 

optimizing conditions for high-quality leaf production. 
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MATERIALS AND METHODS 

Experimental Setup: The study was conducted from 2021 

to 2023 at the Scientific Center of Agrobiotechnology, 

ANAU. Virus-free in vitro plants of the grapevine cultivar 

Vitis vinifera L. 'Deghin Yerevani', a native Armenian 

seedless variety, were used. These plants were 

regenerated from the shoot apical meristem and sourced 

from the National Grape Field Collection (geographic 

coordinates 40.157419°N, 44.291986°E). The in vitro 

plants were cultured in four distinct groups, each with a 

different growth medium composition. Group I consisted 

of MS medium without any plant growth regulators (PGR-

free). Group II involved MS medium supplemented with 

1.0 mg/L Indole-3-acetic acid (IAA). Group III contained 

MS medium with 1.0 mg/L IAA and 1.0 mg/L gibberellic 

acid (GA₃). Group IV included MS medium supplemented 

with 1.0 mg/L IAA, GA₃, and 6-Benzylaminopurine (BAP). 

Following the in vitro culturing phase, plants from each 

group were transferred to either an aeroponic system or 

pots in a greenhouse for further growth and analysis. 
 

Aeroponic System: The aeroponic system, designed for 

soil-free cultivation, kept plant roots suspended in a 

controlled environment, where they received essential 

nutrients, water, and oxygen through a nutrient-rich 

mist. This mist, delivered via nozzles or sprayers, allowed 

for direct root exposure to air, differentiating it from 

hydroponics, which uses water-based solutions [31]. The 

system utilized a misting cycle of 5-second bursts every 

15 minutes throughout the day. The environment was 

maintained at a temperature range of 20°C to 25°C with 

70% humidity, and with a photoperiod of 16 hours of light 

followed by 8 hours of darkness, at a light intensity of 50 

μmol/m²*s. The nutrient solution was based on that of 

Buttaro et al. (2012) [32] and Di Lorenzo et al. (2013) [33]. 
 

Greenhouse Environment: Simultaneously, other plants 

were transferred to pots in a greenhouse. The 

greenhouse conditions were controlled with a 

temperature range of 20°C to 25°C and a relative 

humidity of 60% to 70%. It was equipped with both 

natural and artificial lighting to ensure a photoperiod of 

16 hours of light and 8 hours of darkness. Soil moisture 

was monitored, and watering was performed when the 

top inch of soil felt dry. A balanced, slow-release fertilizer 

was applied as needed. The greenhouse pots contained a 

soil mixture composed of one part perlite, two parts peat, 

and one part soil. 

Both systems ran for 8 weeks, with each treatment 

(aeroponic and soil) replicated three times. Each group 

consisted of 10 plants, totaling 40 plants across all 

groups. To obtain reliable results, 5 to 10 mature, healthy 

leaves per plant were harvested, ensuring minimal 

variability. Chlorophylls a and b were determined 

according to Lichtenthaler (1987) [34], ascorbic acid 

content via iodine titration (AOAC International, 2000) 

[35], and sugars were measured using a modified method 

based on Melgarejo et al. (2000) [36]. Macro- and 

micronutrient content was assessed according to Jones, 

Wolf, and Mills (1991) [37]. 
 

Statistical Analysis: Data from three independent 

experiments were combined and presented as mean 

values. Treatment means were compared using the 

standard error (SE) of the mean. Significant differences 

between means were determined using a Student’s t-

test, with significance set at p < 0.05. 
 

RESULTS 

This study evaluated the biochemical composition of 

grapevine leaves from virus-free tissue-cultured 'Deghin 

Yerevani' plants, comparing those cultivated in aeroponic 

versus soil conditions. Notable differences were 

observed in photosynthetic pigments and nutrient 

content between the two cultivation methods. 

Table 1 summarizes the chlorophyll content in 

grapevine leaves under different treatments and growing 

conditions. Plants cultivated in the aeroponic system 

exhibited significantly higher levels of chlorophyll a, 

chlorophyll b, and total chlorophyll compared to those 

grown in soil (P < 0.05).  
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Table 1. Comparison of Leaf Chlorophyll a, Chlorophyll b, and Total Chlorophyll in Vitis vinifera Under Greenhouse and 

Aeroponic Conditions. 
 

Treatment Group Growing 

Condition 

Chlorophyll a  

(mg/g FW) 

Chlorophyll b 

(mg/g FW) 

Chl 

a/b 

Total Chlorophyll 

(mg/g FW) 

Group I (PGR-free) 

control 

Greenhouse  1.35 ±0.009 0.60±0.01 2.24±0.05 1.95 

 Aeroponic 1.45±0.005 0.63±0.005  2.30±0.016 2.08 

Group II (IAA 1.0 mg/L) Greenhouse 1.68 ±0.007 0.66±0.02 2.54±0.006 2.34 

 Aeroponic 1.75±0.005 0.67±0.006 2.61±0.03 2.42 

Group III (IAA 1.0 mg/L 

+GA 1.0 mg/l) 

Greenhouse 1.83±0.01 0.71±0.009 2.58±0.01 2.54 

 Aeroponic 1.90 ±0.01 0.72±0.01 2.64±0.03 2.62 

Group IV (IAA 1.0 mg/L 

+ GA3 1.0 mg/l + BAP 

1.0 mg/l) 

Greenhouse 2.0 ±0.06 0.74 ±0.006 2.70 ±0.07 2.74 

 Aeroponic 2.6 ±0.06 0.83±0.01 3.1± 0.08 3.43 

 

Groups II (IAA 1.0 mg/L) and III (IAA 1.0 mg/L + GA3) 

displayed higher chlorophyll a level compared to the 

control group. Group IV (IAA 1.0 mg/L + GA3 + BAP 1.0 

mg/L) had the highest chlorophyll a content. Similar to 

chlorophyll a, Groups II and III showed increased 

chlorophyll b levels relative to the control. Group IV 

exhibited the highest chlorophyll b content. The highest 

ratio (Chl a/b) was observed in Group IV, indicating an 

enhanced balance between chlorophyll a and b due to 

the combined treatments. Group IV had the highest total 

chlorophyll content, with Group III also showing 

increased levels compared to the control. 

 

Sugar Content: The sugar content in grapevine leaves 

varied with cultivation method and growth regulators 

[Fig.1]. 

 

  

Fig. 1. Sugar Content of In vitro-Derived Plantlets leaves Grown in Aeroponic and Soil-Based Conditions. 
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In terms of sugar content, significant differences 

were noted between the two cultivation methods and 

among the growth regulator treatments. In soil-based 

cultivation, the sugar content increased from 3.7 g/100g 

in the control group to 5.1 g/100g in Group IV. Aeroponic 

cultivation led to even higher sugar levels, rising from 4.1 

g/100g in the control group to 5.7 g/100g in Group IV. The 

application of growth regulators consistently enhanced 

sugar content, with Group IV (IAA 1.0 mg/L + GA3 + BAP 

1.0 mg/L) achieving the highest values in both soil-based 

and aeroponic systems. 

 

Table 2. shows the Vitamin C content in grapevine leaves under various growth conditions and treatments. Vitamin C Content 

of In Vitro-Derived Plantlets Grown in Aeroponic and Soil-Based Conditions 
 

Group Growth Regulators Applied Aeroponics, Vitamin C 

Content, mg/100g 

Soil-Based Cultivation, 

Vitamin C Content, 

mg/100g 

Group I None 15.24 13.7 

Group II     IAA (1.0 mg/L) 17.5 15.0.0 

Group III IAA (1.0 mg/L) + GA3 (1.0 mg/L) 18.2 16.3 

Group IV IAA (1.0 mg/L) + GA3 (1.0 mg/L) + BAP (1.0 mg/L) 20.4 18.8 

 

Vitamin C content also varied significantly with 

cultivation method and growth regulator application. In 

aeroponic systems, Vitamin C content increased from 

15.24 mg/100g in the control group to 20.4 mg/100g in 

Group IV. Soil-based cultivation showed a similar trend, 

with Vitamin C content rising from 13.7 mg/100g in the 

control to 18.8 mg/100g in Group IV. The application of 

growth regulators, particularly the combination of IAA, 

GA3, and BAP, significantly enhanced Vitamin C levels in 

grapevine leaves under both cultivation conditions. 

The mineral content of fresh grape leaves was 

evaluated under different cultivation methods, including 

the application of growth regulators (IAA, GA3, and BAP) 

(table 3). 

The mineral content analysis of fresh grape leaves 

revealed distinct trends across different cultivation 

methods and treatments. Nitrogen (N) content increased 

from 7.2±0.03 mg/100g in the soil-based control group to 

8.3±0.03 mg/100g with the application of growth 

regulators. In aeroponic systems, nitrogen levels were 

consistently higher, rising from 8.1±0.02 mg/100g in the 

control group to 9.7±0.04 mg/100g with growth 

regulators. Phosphorus (P) content also showed a 

significant increase in both cultivation methods, rising 

from 73.2±1.7 mg/100g to 87.2±2.6 mg/100g in soil-

based cultivation and from 86.1±2.0 mg/100g to 95.2±1.9 

mg/100g in aeroponics. Potassium (K) levels exhibited a 

marked increase, from 235.4±3.4 mg/100g to 255.2±2.16 

mg/100g in soil-based cultivation and from 251.2±2.7 

mg/100g to 275.4±3.1 mg/100g in aeroponics. Similarly, 

calcium (Ca) content improved with the application of 

growth regulators, increasing from 269.8±2.4 mg/100g to 

305.1±2.8 mg/100g in soil-based cultivation and from 

286.0±3.1 mg/100g to 321.2±3.4 mg/100g in aeroponics. 

Magnesium (Mg) levels increased slightly, from 

80.19±0.70 mg/100g to 81.89±0.60 mg/100g in soil-

based cultivation and from 83.9±0.50 mg/100g to 

87.99±1.0 mg/100g in aeroponics. 
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 Table 3. Mineral Content of Fresh Grape Leaves (mg/100g) 
 

Element Soil-Based 
Cultivation 
Control 

Aeroponics 
Control 

Soil-Based Cultivation, IAA 
(1.0 mg/L) + GA3 (1.0 mg/L) + 
BAP (1.0 mg/L) 

Aeroponics; IAA (1.0 mg/L) + 
GA3 (1.0 mg/L) + BAP (1.0 mg/L) 

Nitrogen (N) 7.2±0.03 8.1±0.02 8.3±0.03 9.7±0.04 

Phosphorus (P) 73.2±1.7 86.1±2.0 87.2±2.6 95.2±1.9 

Potassium (K) 235.4±3.4 251.2±2.7 255.2±2.16 275.4±3.1 

Calcium (Ca) 269.8±2.4 286.0±3.1 305.1±2.8 321.2±3.4 

Magnesium (Mg) 80.19±0.70 83.9±0.50 81.89±0.60 87.99±1.0 

Iron (Fe) 2.0±0.23 2.4±0.10 2.10±0.23 2.60±0.10 

Copper (Cu) 0.29±0.01 0.31±0.02 0.31±0.01 0.33±0.01 

Zinc (Zn) 0.43±0.02 0.50±0.02 0.51±0.02 0.59±0.02 

Manganese (Mn) 2.45±0.01 2.58±0.02 2.61±0.02 2.95±0.01 

 

The iron (Fe) content rose modestly, from 2.0±0.23 

mg/100g to 2.1±0.23 mg/100g in soil-based cultivation 

and from 2.4±0.10 mg/100g to 2.6±0.10 mg/100g in 

aeroponics. Copper (Cu) content increased slightly from 

0.29±0.01 mg/100g to 0.31±0.01 mg/100g in soil-based 

cultivation and from 0.31±0.02 mg/100g to 0.33±0.01 

mg/100g in aeroponics. Zinc (Zn) levels also rose 

modestly in both methods, from 0.43±0.02 mg/100g to 

0.51±0.02 mg/100g in soil-based cultivation and from 

0.50±0.02 mg/100g to 0.59±0.02 mg/100g in aeroponics. 

Finally, manganese (Mn) content increased with growth 

regulator application, from 2.45±0.01 mg/100g to 

2.61±0.02 mg/100g in soil-based cultivation and from 

2.58±0.02 mg/100g to 2.95±0.01 mg/100g in aeroponics. 

 

DISCUSSION 

The findings of this study highlight the superior efficacy 

of aeroponic cultivation systems in enhancing the 

biochemical properties of grapevine leaves. Aeroponic 

cultivation consistently resulted in higher levels of 

chlorophyll a and b, indicating an optimal environment 

for chlorophyll synthesis [38]. The increased chlorophyll 

a/b ratio observed in Group IV (IAA at 1.0 mg/L, GA3, and 

BAP) under aeroponics reflects enhanced photosynthetic 

efficiency. This supports the notion that controlled 

environments, such as those provided by aeroponics, are 

highly effective in optimizing plant physiology, aligning 

with previous research on the advantages of such 

systems [39]. 

Plant Growth Regulators (PGRs) including IAA, GA3, 

and BAP were found to significantly boost chlorophyll 

content in both cultivation methods. Notably, the 

combination of these PGRs in Group IV demonstrated the 

most substantial increase in chlorophyll levels under 

aeroponics. This finding is consistent with studies 

suggesting that PGRs enhance chlorophyll production by 

influencing critical metabolic pathways [40]. 

Aeroponic systems showed superior performance 

compared to traditional greenhouse cultivation in terms 

of chlorophyll content. This can be attributed to the 

controlled factors such as humidity, nutrient availability, 

and root oxygenation, which collectively create an 

environment conducive to optimal nutrient uptake and 

metabolic activity. The combination of aeroponics with 

targeted PGRs not only enhances chlorophyll synthesis 

but also holds potential for improving grapevine growth 

and yield. Future research should delve into the 

mechanisms behind these effects and assess their impact 

http://www.ffhdj.com/


Functional Food Science 2024; 4(9): 359-369 FFS 
 

 

Page 366 of 369 

across various grapevine cultivars and environmental 

conditions. 

The impact of growth regulators on sugar content in 

grapevine leaves was significant across both soil-based 

and aeroponic systems [41]. The highest sugar content 

was observed with the application of IAA, GA3, and BAP, 

highlighting the synergistic effects of these hormones on 

metabolic pathways that lead to increased sugar 

accumulation [42]. This result aligns with previous 

studies showing that PGRs influence key physiological 

processes related to sugar metabolism [43]. 

Aeroponic cultivation consistently yielded higher 

sugar content compared to soil-based systems.  

This may be due to the more controlled 

environment in aeroponics, which enhances nutrient 

uptake and physiological processes more efficiently than 

traditional soil-based systems. While IAA alone and in 

combination with GA3 showed improvements, the most 

significant enhancement was observed with the 

combination of IAA, GA3, and BAP. This reflects the 

combined roles of these hormones in regulating growth 

and sugar metabolism: IAA influences cell elongation and 

differentiation, GA3 promotes cell division and 

elongation, and BAP aids in cell proliferation and shoot 

formation. 

Vitamin C content also increased significantly with 

the application of growth regulators, particularly in the 

aeroponic system [44]. The control group under 

aeroponics had 15.24 mg/100g of Vitamin C, which 

increased to 20.4 mg/100g in Group IV with the 

application of IAA, GA3, and BAP. This trend was also 

observed in soil-based cultivation, with the highest 

Vitamin C content of 18.8 mg/100g in Group IV. Higher 

Vitamin C levels in aeroponics can be attributed to more 

efficient nutrient uptake and optimal growth conditions 

[45]. These findings underscore the role of PGRs in 

enhancing Vitamin C content, with aeroponics amplifying 

these effects [46]. 

The combined use of growth regulators and 

aeroponics significantly impacted the mineral content of 

grapevine leaves. Aeroponic systems consistently yielded 

higher concentrations of all major mineral elements 

compared to soil-based cultivation, particularly with the 

application of growth regulators. Enhanced levels of 

nitrogen, phosphorus, potassium, and calcium observed 

in aeroponics are attributed to improved nutrient uptake 

efficiency, as roots are directly exposed to nutrient-rich 

solutions. Growth regulators further amplified this effect 

by promoting root development and increasing nutrient 

absorption. 

While magnesium, iron, copper, zinc, and 

manganese also showed increased concentrations in 

aeroponics, the differences were less pronounced 

compared to macronutrients. This suggests that while 

aeroponics effectively boosts overall mineral content, 

the impact on micronutrient absorption may vary 

depending on the specific growth regulators used. The 

synergistic approach of combining growth regulators 

with aeroponics optimizes the nutrient profile of 

grapevine leaves, potentially leading to improved plant 

growth, higher yields, and enhanced fruit quality. 

Further studies are needed to assess the long-term 

effects of these methods on grapevine growth, yield, and 

fruit quality. 

 

CONCLUSION 

This study demonstrated that aeroponic cultivation 

significantly improved the nutritional quality of grapevine 

leaves, surpassing traditional methods in enhancing 

chlorophyll, sugar, and Vitamin C content. The addition 

of plant growth regulators (PGRs) further optimized 

these benefits, suggesting a combined approach could 

boost plant growth and yield. The increased mineral 

content observed in aeroponics, particularly for nitrogen, 

phosphorus, potassium, and calcium, highlighted its 

potential to optimize grapevine cultivation. Future 
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studies should assess the long-term effects of these 

methods on grapevine growth, yield, and fruit quality. 
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