Research Article

Open Access

Effects of supplementation rich in CYP2E1 and decarboxylase enzymes on leukocytes of smoking workers exposed to benzene at Osowilangon shoe industry home in Surabaya

Abdul Rohim Tualeka¹, Gurendro Putro², Aceng Ruyani³, Susmiati⁴, Aris Santjaka⁵, Abdul Aziz Alimul Hidayat⁶, Rizky Maharja⁷, Ellyza Setya Maryiantari⁸, Kurnia Ardiansyah Akbar⁹, Nur Subeki¹⁰, Dimas Rahadian Aji Muhammad¹¹, Nur Azalina Suzianti Feisal¹², Lukman Handoko¹³, Nur Mukarromah¹⁴, Dina Keumala Sari¹⁵, Jihan Faradisha¹⁶, Pudji Rahmawati¹⁷, Sunardi Sunardi¹⁸

¹Department of Occupational Health and Safety, Public Health Faculty, Airlangga University, 60115, Surabaya, East Java, Indonesia; ²Center Research for Public Health and Nutrition, National Research and Innovation Agency, Jakarta, Indonesia; ³Department of Biology Education, Faculty of Teacher Training and Education, Bengkulu University, Jl. WR. Supratman, Kandang Limun, Kec. Muara Bangka Hulu, Bengkulu 38371, Indonesia; ⁴Kadiri University, Kediri, East Java, Indonesia; 5Poltekkes Kemenkes Semarang, Semarang, Indonesia; 6Nursing Faculty, University of Muhammadiyah Lamongan, Lamongan, East Java, Indonesia; ⁷Department of Occupational Safety and Health, Faculty of Health Sciences, University of Sulawesi Barat; ⁸Department of Occupational Health and Safety, Kerta Cendekia Health Polytechnic; Sidoarjo, East Java, Indonesia; ⁹Department of Occupational Health and Safety, Faculty of Public Health, University of Jember, Jember, East Java, Indonesia; ¹⁰Faculty of Engineering, University of Muhammadiyah Malang; Malang, East Java, Indonesia; ¹¹Department of Food Science and Technology, Sebelas Maret University, Jl. Ir Sutami 36A, Surakarta 57126, Surakarta, Indonesia; ¹²Department of Diagnostic and Allied Health Science, Management and Science University, Shah Alam, Malaysia; ¹³Shipbuilding Institute of Polytechnic Surabaya; Surabaya, East Java, Indonesia; ¹⁴Faculty of Health Science, Universitas of Muhammadiyah Surabaya, Surabaya, East Java, Indonesia; ¹⁵Faculty of Medicine, University of Sumatera Utara; Medan, Indonesia; 16 Department of Occupational Safety and Health, Vocational School, Sebelas Maret University Surakarta, Surakarta, Indonesia; ¹⁷Department of Development of the Islamic Society, State Islamic University of Sunan Ampel, Surabaya, Indonesia; ¹⁸Departemen Keselamatan dan Kesehatan Kerja, Universitas Gorontalo, Indonesia.

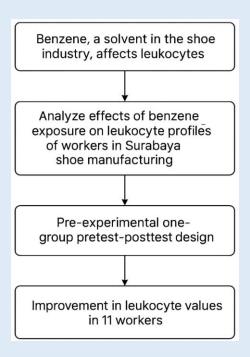
*Corresponding author: Abdul Rohim Tualeka, Department of Occupational Health and Safety, Public Health Faculty, Airlangga University, PQJM+XC Mulyorejo, Surabaya, 60115, East Java, Indonesia

Submission Date: April 28th, 2025, Acceptance Date: August 20th, 2025, Publication Date: August 22nd, 2025

Please cite this article as: Tualeka A. R., Putro G., Ruyani A., Susmiati., Santjaka A., Hidayat A. A. A., Maharja R., Maryiantari E. S., Akbar K. A., Subeki N., Muhammad D. R. A., Feisal N. A. S., Handoko L., Mukarromah N., Sari D. N., Faradisha J., Rahmawati P., Sunardi S. Effects of supplementation rich in CYP2E1 and decarboxylase enzymes on leukocytes of smoking workers exposed to benzene at Osowilangon shoe industry home in Surabaya. *Functional Food Science* 2025; 5(8): 393 – 401. DOI: https://doi.org/10.31989/ffs.v5i8.1633

ABSTRACT

Background: Exposure to benzene in the shoe industry is a risk factor for immune system disorders, especially in the leucocyte profile. Supplementation of enzymes such as CYP2E1 and decarboxylase could potentially protect against the toxic effects of benzene, especially in workers who smoke.


Objectives: This study aims to analyze the effect of CYP2E1 and decarboxylase-rich enzyme supplementation on the leukocyte profile of smokers exposed to benzene in a home-based shoe industry in Surabaya.

Methods: This study employs a quantitative approach with a pre-experimental one-group pretest-posttest design. The study was conducted in two locations of the home shoe industry in RW 1 and RW 2 Tambak Osowilangun Village, Surabaya. The sample consisted of 27 workers who fulfilled the inclusion criteria.

Results: The cross-tabulation results showed that most non-smoking workers experienced a decrease in leukocyte values after receiving enzyme supplementation, from 14 people (58.3%) to 5 people (20.8%), indicating an improvement in leukocyte values in 9 people. Overall, 11 workers (41%) had improved leucocyte values after the intervention.

Conclusion: Supplementation of CYP2E1 and decarboxylase enzymes contributed to the improvement of the leukocyte profile in smokers exposed to benzene, suggesting the potential of this intervention in reducing the toxic effects of benzene in the work environment.

Keywords: safety to work, benzene, leukocytes, home industry, shoemakers

Graphical abstract: Effects of Supplementation Rich in CYP2E1 and Decarboxylase Enzymes on Leukocytes of Smoking Workers Exposed to Benzene at Osowilangon Shoe Industry Home in Surabaya

©FFC 2025. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0)

INTRODUCTION

Benzene is a solvent that is commonly used in glues, adhesives, and paints in the shoe production process. Long-term exposure to benzene vapor is known to have toxic effects, especially on the hematopoietic and immune systems (1,2). Although in some developed countries, such as Europe and North America, benzene exposure has decreased, in some Asian countries, including Indonesia, this exposure remains a serious occupational health problem, particularly in home industries that lack adequate supervision (3-4).

Several studies have shown that shoe repair workers have a risk of benzene exposure that exceeds the threshold value and experience major health risks (1,5,6). Workers are also reported to experience hematological disorders, such as changes in leukocyte counts and an increased incidence of cells with linked nuclei and micronuclei, indicating genetic damage due to oxidative stress (7,8).

In work environments such as the Tambak Osowilangun home shoe industry in Surabaya, workers generally use glue in open containers, without gloves or masks, and work in enclosed spaces with poor ventilation. These conditions increase the risk of continuous inhalation of high levels of benzene vapor.

Chronic exposure to benzene can increase the activity of CYP2E1 enzymes involved in the bioactivation of toxic compounds, as well as generate free radicals that trigger oxidative stress (9-10). One potential approach to such toxic effects is mitigate by enzyme supplementation, particularly those containing CYP2E1 and decarboxylase, to support metabolism and neutralize the oxidative impact of chemical exposure. A similar approach was demonstrated in a study on xylene exposure among car painting workers in Surabaya, which found that food intake containing CYP2E1 enzymes and glycine could support detoxification and reduce occupational health risks (11). This supports the potential of targeted enzyme-based interventions in reducing the toxic effects of aromatic hydrocarbons such as benzene.

The use of enzyme supplementation in this study also reflects the development of functional food science that emphasizes the role of bioactive compounds-both animal and plant-derived-in improving health and reducing disease risk. As stated in recent literature, the identification and validation of bioactive compounds through systematic research is an important step in legitimizing functional food interventions in the context of public health (12). This study is novel in its approach, which combines monitoring the hematological status of shoe home industry workers exposed to benzene with CYP2E1 and decarboxylase enzyme supplementation interventions. To date, no study has examined the direct effect of enzyme supplementation on leucocyte profile in a population of informal workers in the home-based shoe sector.

This study aimed to analyze the effect of enzyme supplementation rich in CYP2E1 and decarboxylase on the leukocyte profile in smokers exposed to benzene in a home-based shoe industry in Surabaya.

METHODS

This research uses an experimental quantitative approach with a pre-experimental one-group pretest-posttest design, which is research that explains the cause-and-effect relationship (causality) between one variable and another by involving only one experimental group without a control group, which will be given a pretest and posttest.

This research was in the shoe home industry in community-level administrative units (Rukun Warga/RW) 1 and 2 Tambak Osowilangun Surabaya Village, with a total of 2 research locations in several home industries. This research began in July 2023 until December 2023. The population in this study was all groups of shoe workers from several Tambak Osowilangun Surabaya shoe home industries.

Respondents were given the intervention in the form of supplements containing CYP2E1 and decarboxylase enzymes. The supplement was administered orally as 500 mg twice a day (morning and

evening) after meals, for 14 consecutive days. Supplement administration was done in person and supervised by the research team at the work site. Research respondents were recruited following the inclusion criteria:

- Not in the period of menstruation or menstruation.
- 2. Not in a pregnant condition.
- Not taking certain drugs or anesthesia, and alcohol.
- 4. Workers are in good health (not disabled).

The sample of this study was a group of shoe workers who fit the inclusion criteria which led to 27 workers who were shoe craftsmen workers in Tambak Osowilangun Surabaya participating. There are two variables, namely the independent variable (characteristics of workers, including age, gender, length of service, nutritional status, smoking habits, exercise habits, history of having diseases, and use of PPE) and the dependent variable (improvement in leukocyte values).

Data collection method: Blood was taken from a vein, using a 5cc syringe, taken as much to 5cc, put in a vacuum tube with EDTA, and without EDTA as much as 2.5 cc each. The collected blood was put into an ice box then

the blood sample was taken to the TDC (tropical disease centre) Laboratory for testing. Blood sampling was done by authorized medical personnel (doctors or nurses) who are experts in their fields.

Data Processing and Analysis: The data used will be analyzed using the SPSS (Statistical Product and Services Solutions) computer program. Data presentation was done in the form of a frequency distribution table accompanied by a narrative. The data analysis used in this study was descriptive analysis.

RESULTS

Identifying Worker Characteristics: Based on the descriptive results of worker characteristics presented in Table 1, the shoe home industry in Tambak Osowilangun Surabaya shows that the average age of workers is 52.4 years, with the youngest age being 37 years old and the oldest being 67 years old. Based on the interview results, workers' smoking habits showed that the average cigarette consumption among smokers was 20.3 cigarettes/day (range: 19–22 cigarettes/day). When calculated across the entire study population, including both smokers and non-smokers, the average was 2.3 cigarettes/day. However, most of the workers did not smoke, as many as 24 people (88.9%).

Table 1. Results of Frequency Distribution Analysis of Characteristics of Home Industry Workers of Shoe Tambak Osowilangun Surabaya

Worker Characteristics Variables	Category	Frequency (f)	Percentage (%)	
Age	Productive age group: 15-64 years old	23	85.2	
	Non-productive age group >65 years	4	14.8	
	Total 27		100	
	Mean (SD)	52.4 years (9.7)		
	Max Value	67 year		
	Min Value	37 year		
Sex	Male	8		
	Female	19	70.4	
	Total	27	100	
Smoking habit	No smoking	24	88.9	
	Heavy smokers: (>16 cigarettes/day)	3	11.1	
	Total	27	100	
	Mean (SD)	2.3 cigarettes/day (6.6)		

Worker Characteristics Variables	Category	Frequency (f)	Percentage (%)
	Max Value	22 cigaret	tes/day
	Min Value	19 cigarettes,	
History of disease	Has a history of disease 18		66.7
	No history of disease	9	33.3
	Total	27	100
Use of personal protective	Yes, every day	3	11.1
equipment	Sometimes	2	7.4
	Never	22	81.5
	Total	27	100

Source: Results of Researcher Data Collection Using Questionnaires, 2023

Table 2. Cross Tabulation Analysis of Leukocyte Values Before and After Administration of Cyp2e1 Enzyme and Decarboxylase Enzyme for Home Industry Workers of Tambak Osowilangun Shoe Industry Surabaya

Pretest Leukocytes	Posttest Leukocyte Normal (N)	Posttest Leukocyte Abnormal (ABN)	Total
	n	%	n
Normal (N)	11	100	0
Abnormal (ABN)	11	68.8	5
Total	22	81.5	5

Source: Results of Researcher Data Processing Using SPSS (2024)

Identifying Leukocyte Values of Home Industry Workers of Tambak Osowilangun Surabaya Shoe Industry

Description

u/L: Leukocyte Value Unit

n: Frekuensi N: Normal

ABN: Abnormal

Based on the cross-tabulation results in Table 2, it was found that before the administration of CYP2E1 and decarboxylase enzymes, there were 16 workers (59%) with abnormal leucocyte values. After the intervention, the number of workers with abnormal leucocyte values

decreased to 5 people (18.5%). Thus, there were 11 workers (40.5%) who had improved leucocyte values after enzyme supplementation.

Analyzing the Difference in Leukocyte Values Before and After Supplementation Rich in CYP2E1 Enzymes and Decarboxylase Enzymes for Home Industry Workers of Tambak Osowilangun Surabaya Shoe Industry: The analysis used is descriptive analysis to analyze the impact of supplementation rich in CYP2E1 enzymes and decarboxylase enzymes between two or more variables; the complete analysis results as shown in Table 3. following:

Table 3. Descriptive Results of Differences in Leukocyte Values Before and After Supplementation Rich in CYP2E1 Enzymes and Decarboxylase Enzymes on the Improvement of Leukocyte Values

Parameters	Group A: Normal	Group A: Normal Pretest (11 workers)		Group B: Pretest Abnormal (16 workers)		
	Pretest (N)	Posttest (ABN)	Difference	Pretest (N)	Posttest (ABN)	Difference
Frequency (n)	8,2	8,5	0,3	6,5	11	4,5
Mean	8,2	11,3	3,1	7,6	11	3,4
Median	10,2	12,6	2,4	11	11,3	0,3
Maximum	4,2	2,5	1,7	3,8	10,9	7,1
Minimum	3,3	8,8	5,5	3,6	0,3	3,3

Source: Results of Researcher Data Processing Using SPSS (2024)

u/L: Leukocyte Value Unit

n: Frekuensi N: Normal

ABN: Abnormal

Based on the results in Table 3, it is known that before supplementation, the average abnormal leucocyte value of workers was 8.5 u/L, with the lowest value of 2.5 u/L and the highest of 12.6 u/L. After supplementation, the average abnormal leucocyte value was 11.0 u/L, with the lowest value being 10.9 u/L and the highest being 11.3 u/L. From the data distribution, the number of workers with abnormal leucocyte values

before supplementation was 16 people (59%), and afterwards it was 5 people (18.5%). This shows that the administration of CYP2E1 and decarboxylase enzymes had an impact on the improvement of leucocyte values in 11 workers (41%).

Comparing Leukocyte Values Before and After Administration of Cyp2e1 Enzyme and Decarboxylase Enzyme Based on Characteristics of Home Industry Workers of Tambak Osowilangun Surabaya Shoe Industry: Based on the results of the research data obtained, cross tabulation based on individual characteristics with the complete worker leukocyte value can be seen in Table 4 as shown:

Table 4. Results of Cross Tabulation Analysis of Smoking Habits and Leukocyte Values Before and After CYP2E1 and Decarboxylase Enzyme Supplementation

Smoking Habit	Total	Pre-test	Pre-test	Post-test	Pre-test	Improvement
	Workers	Normal (N)	Abnormal (ABN)	Normal (N)	Abnormal (ABN)	(ABN to N)
Non- Smoker	24	10 (41,7%)	14 (58,3%)	19 (79.2%)	5 (20.8%)	9
Heavy Smoker (>16 cig/day)	3	1 (33,3%)	2 (66,7%)	3 (100%)	0 (0%)	2
Total	27	11 (40,7%)	16 (59,3%)	22 (81.5%)	5 (18.5%)	11

Source: Results of Researcher Data Processing Using SPSS (2024) Description

N: Normal leukocyte count

ABN: Abnormal leukocyte count

Improvement (ABN to N): Number of workers whose leukocyte count improved from abnormal to normal after supplementation

Based on the cross-tabulation of the distribution of workers' smoking habits, most workers with non-smoking habits had improved leukocyte values, from 14 people (58.3%) to 5 people (20.8%), indicating improvement in 9 workers. In the heavy smoker group (>16 cigarettes/day), of the 3 people observed, all showed improvement in leucocyte values after supplementation.

DISCUSSION

Smoking Habit: The results of this study showed that among Tambak Osowilangun Surabaya home-based shoe industry workers, most were non-smokers, as many as 24

people (88.9%). According to (13) Smoking can increase the risk of benzene exposure even in minute quantity. This is because smoking can accelerate the absorption process of benzene in the body due to the disruption of the cilia in the respiratory tract (14-15). In addition, the concentration of toluene in cigarette smoke ranges from 5-90 μ g/cigarette (16), and it is estimated that each cigarette contains 80-100 μ g of benzene, with absorption rates reaching 50%, resulting in an accumulation of up to 1000 μ g of benzene/day for active smokers (17). Smoking also affects liver cell health (18) The main site of benzene metabolism (19). Therefore, workers who smoke have a higher susceptibility to health problems due to benzene exposure.

Changes in Leukocyte Values Before and After Enzyme Supplementation: Before the intervention, 16 workers (59%) had abnormal leucocyte values, and 11 workers (41%) were within the normal range. After CYP2E1 and decarboxylase enzyme supplementation, workers with regular leucocyte values increased to 22 (81%), while those with abnormal values decreased to 5 (19%). Overall, there were 11 workers (41%) who had improved leucocyte values. These results indicate that enzyme administration plays a role in improving leucocyte values. This is in line with the theory that benzene exposure can cause myeloid stem cell failure and reduce blood cell production (20-21), as well as increase the risk of anemia as found in Pulogadung industrial workers (22).

Effects of Benzene Exposure and the Role of Enzyme Supplementation: An increase in leucocyte count (leukocytosis) is generally a response to chronic infection or toxic exposure (7,23,24). In this study, leukocytosis was likely caused by the length of working life (>20 years), leading to chronic exposure to benzene vapor. Research (25) showed that hematological changes due to benzene exposure can occur even at exposure levels previously considered safe. Exposure to benzene is also associated with hematopoietic system disorders, including abnormal leucocytes, which have the potential to develop into blood cancers such as leukemia. The role of CYP2E1 and decarboxylase enzymes in the detoxification of toxic compounds may help reduce the impact of oxidative stress from this exposure.

Relationship with Smoking Habit: The cross-tabulation results showed that in non-smokers, enzyme supplementation showed an improvement in leucocyte values in 9 workers. However, these results suggest that smokers also experienced a positive response to the intervention, albeit to a lesser extent. Study (26) showed that smokers with a consumption of 33 cigarettes/day can absorb 1.8 mg of benzene per day. However, as stated in (27,28), cigarette content does not affect hemoglobin levels directly, but rather reduces the ability

of hemoglobin to bind and distribute oxygen. Exposure to toxic substances in cigarette smoke can increase levels of reactive oxygen species (ROS), which trigger oxidative stress (29–31). This oxidative stress is characterized by increased levels of malondialdehyde (MDA), which follows the finding that smoking affects the oxidative status of the body.

This study makes a novel contribution to the field of occupational toxicology by demonstrating that enzymatic intervention can be an alternative approach in mitigating the hematological effects of chronic benzene exposure. This approach fills the gap of previous studies that mainly focus on the description of exposure or exposure effects without including biological intervention strategies.

CONCLUSIONS

Based on the results and discussion of this study, it can be concluded that the provision of enzyme supplementation rich in CYP2E1 and decarboxylase to home-based shoe industry workers in Tambak Osowilangun Surabaya contribute to the improvement of leukocyte values. A total of 11 workers (41%) had improved leucocyte values after the intervention, of which 9 were non-smokers. This finding suggests that enzyme supplementation has the potential to have a positive effect on leucocyte profiles, especially in nonsmoking individuals with long-term exposure to benzene. These results demonstrate the potential of the enzyme supplementation approach as an innovative strategy in the health protection of workers exposed to benzene, especially in the cottage industry which often lacks regular monitoring.

Acknowledgements

We thank the Rector of Universitas Airlangga for allowing this research to be conducted. We also thank Salsabila Novianti for helping us with the editing process.

REFERENCES

- Vermeulen R, Lan Q, Li G, Rappaport SM, Kim S, van Wendel de Joode B, et al. Assessment of dermal exposure to benzene and toluene in shoe manufacturing by activated carbon cloth patches. J Environ Monit. 2006;8(11):1143.
 - DOI: https://doi.org/10.1039/B608076F
- Saeedi M, Malekmohammadi B, Tajalli S. Interaction of benzene, toluene, ethylbenzene, and xylene with human's body: Insights into characteristics, sources and health risks. J Hazard Mater Adv. 2024; 16:100-459.
 - DOI: https://doi.org/10.1016/j.hazadv.2024.100459
- González C, Soler A. Infant Nutrition: Breast milk substitutes and gut-brain axis improved by microalgae. *Funct Food Sci*. 2024;4(12):479–94.
 - DOI: https://doi.org/10.31989/ffs.v4i12.1447
- Anigilaje EA, Nasir ZA, Walton C. Exposure to benzene, toluene, ethylbenzene, and xylene (BTEX) at Nigeria's petrol stations: a review of current status, challenges and future directions. Front Public Heal. 2024; 12:1295-758. DOI: https://doi.org/10.3389/fpubh.2024.1295758
- Portengen L, Linet MS, Li G-L, Lan Q, Dores GM, Ji B-T, et al. Retrospective benzene exposure assessment for a multicenter case-cohort study of benzene-exposed workers in China. J Expo Sci Environ Epidemiol. 2016;26(3):334–40. DOI: https://doi.org/10.1038/jes.2015.44
- Abouee-Mehrizi A, Soltanpour Z, Mohammadian Y, Sokouti A, Barzegar S. Health risk assessment of exposure to benzene, toluene, ethyl benzene, and xylene in shoe industry-related workplaces. *Toxicol Ind Health*. 2024;40(1– 2):33–40.
 - DOI: https://doi.org/10.1177/07482337231212693
- Witeska M, Kondera E, Bojarski B. Hematological and hematopoietic analysis in fish toxicology—A review. *Animals*. 2023;13(16):2625.
 - DOI: https://doi.org/10.3390/ani13162625
- Venugopal V, Krishnamoorthy M, Venkatesan V, Jaganathan V, Shanmugam R, Kanagaraj K, et al. Association between occupational heat stress and DNA damage in lymphocytes of workers exposed to hot working environments in a steel industry in Southern India. *Temperature*. 2019;6(4):346–59. DOI: https://doi.org/10.1080/23328940.2019.1632144
- Cawley GF, Connick JP, Eyer MK, Backes WL.
 Environmentally persistent free radicals stimulate CYP2E1-mediated generation of reactive oxygen species at the expense of substrate metabolism. *Drug Metab Dispos*. 2025;53(1):1000-12.

DOI: https://doi.org/10.1124/dmd.124.001939

- D'Souza LC, Paithankar JG, Stopper H, Pandey A, Sharma A.
 Environmental chemical-induced reactive oxygen species generation and immunotoxicity: a comprehensive review.
 Antioxid Redox Signal. 2024;40(10–12):691–714.
 - DOI: https://doi.org/10.1089/ars.2022.0117
- Utami T, Novianti S, Handoko L, Faradisha J, Maharja R, Sunardi S, et al. Prediction Xylen Detox with food intake containing CYP2E1 enzyme and glycine on workers in Surabaya car painting area Indonesia. Funct Food Sci. 2025; 11;5(3):85–96. DOI: https://doi.org/10.31989/ffs.v5i3.1587
- Martirosyan D, Lampert T, Lee M. A comprehensive review on the role of food bioactive compounds in functional food science. Funct Food Sci. 2022;2(3):64.
 - DOI: https://doi.org/10.31989/ffs.v2i3.906
- ATSDR. Addendum To the Toxicological Profile for Benzene [Internet]. Agency for toxic substances and disease registry.
 Atlanta GA: U.S: Agency for Toxic Substances and Disease Registry Division of Toxicology and Human Health Sciences;
 2015. 1–189 p. Available from: https://www.atsdr.cdc.gov/toxprofiles/tp3.pdf
- Ayu PS. Relationship between toluene concentration, malondialdehyde (MDA) level and health complaints in workers of Surabaya printing industry. *Indian J Forensic Med Toxicol*. 2020;14(4):3389–95.
 - DOI: https://doi.org/10.37506/ijfmt.v14i4.12148
- 13. Shahidin FSM, Jalaludin J, Junaidi ES, Tualeka AR. Associations of exposure to PM10 AND PM2.5 with respiratory health symptoms and lung function STAT2.5US among children living near palm oil activity in semenyih, selangor. J Sustain Sci Manag. 2021;16(6):165–79.
 - DOI: http://doi.org/10.46754/jssm.2021.08.015
- Tirtosastro, Samsuri, and A. S. Murdiyati. Chemical Composition of Tobacco and Cigarettes. Buletin Tanaman Tembakau, Serat dan Minyak Industri. 2010; 2(1):33-43. DOI: https://doi.org/10.21082/bultas.v2n1.2010.33-44
- Hoffmann, Dietrich, and Ilse Hoffmann. Tobacco smoke as a respiratory carcinogen. In: Prevention of respiratory diseases. 1st edition. CRC Press; 1993; 36.
- Alsalhen KS, and Abdalsalam RD. Effect of cigarette smoking on liver functions: a comparative study conducted among smokers and non-smokers male in El-beida City, Libya. *Int Curr Pharm J.* 2014;3(7):291–5.
 - DOI: https://doi.org/10.3329/icpj.v3i7.19077
- Li H, Sun Q, Li F, Wang B, Zhu B. Metabolomics of benzene exposure and development of biomarkers for exposure hazard assessment. *Metabolites*. 2024;14(7):377.
 - DOI: https://doi.org/10.3390/metabo14070377

- Yusoff NA, Abd Hamid Z, Budin SB, Taib IS. Linking benzene, in utero carcinogenicity and fetal hematopoietic stem cell niches: a mechanistic review. *Int J Mol Sci.* 2023;24(7):6335.
 DOI: https://doi.org/10.3390/ijms24076335
- He J, Peng C, Yang X, Li P, Bai J, Jia Q, et al. Identification of critical genes associated with oxidative stress pathways in benzene-induced hematotoxicity. *Heliyon*. 2024;10(15). DOI: https://doi.org/10.1016/j.heliyon.2024.e35427
- Sihombing, Marie, and Woro Riyadina. Factors Associated with Anaemia among Workers in the Pulo Gadung Industrial Area of Jakarta. Media Penelitian dan Pengembangan Kesehatan. 2009; 19(3).
 https://www.neliti.com/publications/153239/faktor-faktor-yang-berhubungan-dengan-anemia-pada-pekeria-di-kawasan-industri-pu#cite
- Sahri M, Tualeka AR, Widajati N. Quantitative risk assesment of crystalline silica exposure in ceramics industry. *Indian J Public Heal Res Dev.* 2019;10(2):601–4.

DOI: https://doi.org/10.5958/0976-5506.2019.00358.9

 Szuber N, Orazi A, Tefferi A. Chronic neutrophilic leukemia and atypical chronic myeloid leukemia: 2024 update on diagnosis, genetics, risk stratification, and management. *Am* J Hematol. 2024;99(7):1360–87.

DOI: https://doi.org/10.1002/ajh.27321

- Giardini I, da Poça KS, da Silva PVB, Andrade Silva VJC, Cintra DS, Friedrich K, et al. Hematological changes in gas station workers. *Int J Environ Res Public Health*. 2023;20(10):5896.
 DOI: https://doi.org/10.3390/ijerph20105896
- 24. Ibrahim AE, Alamir SG, Al-Omairi M, Salman BI, Batakoushy HA, Hegazy MM, et al. Tracking the variations in trace and heavy elements in smoking products marketed in Oman and Egypt: risk assessment after implementation of constraining protocols. *Biol Trace Elem Res.* 2025;203(1):556–69.

DOI: https://doi.org/10.1007/s12011-024-04182-9

- Yudisianto I, Tualeka AR, Widajati N. Correlation between Individual Characteristics and Work Position with Work Fatigue on Workers. *Indones J Occup Saf Heal*. 2021;10(3):350–60.
 - DOI: https://doi.org/10.20473/ijosh.v10i3.2021.350-360
- Tualeka AR, Irianto MA, Prasetyo A, Rachmawati IA, Nawawinetu ED. Detoxification of benzoic acid in workers exposed to toluene using food rich in glycine. *Indian J Public Heal Res Dev.* 2018;9(1):64–9.

DOI: https://doi.org/10.5958/0976-5506.2018.00012.8

 Hermiyanti P. Pengaruh Paparan Klorin Di Udara Terhadap Aktivitas Enzim Gluthatione Peroxidase (GPx), Malonildialdehyde (Mda), Dan Gangguan Pernafasan Pada Pekerja Kolam Renang Di Surabaya. UNIVERSITAS AIRLANGGA; 2015.

- 28. Nowak A, Pawliczak R. Cigarette smoking and oxidative stress. *Alergol Pol J Allergol*. 2022;9(2):89–98.
 - DOI: https://doi.org/10.5114/pja.2022.116285
- Seo Y-S, Park J-M, Kim J-H, Lee M-Y. Cigarette smokeinduced reactive oxygen species formation: a concise review. *Antioxidants*. 2023;12(9):1732.

DOI: https://doi.org/10.3390/antiox12091732