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ABSTRACT 

The gut microbiome incorporates the 

ecological niche specific to the totality 

of the microorganisms in the human 

gut. Unique to every individual, the 

blueprint of the microbiome sets up at 

birth and functions as a human organ 

and plays a significant role in 

digestion, detoxification, fighting 

pathogens, modulating the immune 

system, and improving health. The gut 

microbiota and associated health 

implications are influenced by factors 

such as birth and age, diseases, use of 

antibiotics and food components (e.g., complex carbohydrates and dietary fibers, plant proteins, unsaturated fatty acids, 

and functional compounds of natural origin such as flavones, flavonoids, polyphenols, and antioxidants). Toward this 

end, diet and the gut microbiome interact and govern each other’s fate. Herein, gut dysbiosis, the alteration of natural 

state and composition of the gut microbiome, and the gut microflora diversity modulated by food constituents and 

associated health effects have been discussed. The gut microbiota composition and related metabolites are influenced 

by the diet which in turn modulates human health. The outcome is deemed to aid in developing personalized diet 

recommendations (based on the unique gut microbiome) toward improving human health. 
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INTRODUCTION 

The gut microbiota and its implications on human health 

have emerged as a critical area in health science. The 

intrinsic associations between food, microbiota-

associated gut health and overall health are a topic of 

concern. This paper reviews some important aspects of 

these three aspects with brevity. 

Gut Microbiome: The literature explains the gut 

microbiome from two different perspectives. One 

concept incorporates the ideology of the collective 

genome (pertaining to the suffix -ome that comes from 

the word -genome) of the micro-organisms residing in 

the human gut. The other one, however, incorporates the 

totality of all the micro-organisms, their habitat (the gut; 

pertaining to the suffix -biome) with unique physio-

chemical properties, and all their activities inside the 

habitat thereby forming a unique ecological niche 

specific to the totality of the micro-organisms residing 

the habitat. Thus, the gut microbiome could be defined 

as (1) the collective genome of the microorganisms 

(bacteria, archaea, lower and higher eukaryotes and 

viruses) residing in the human gut [1] or (2) the total 

microorganisms, their habitat (the gut or gastrointestinal 

canal) and activities [2-3]. The appropriateness of these 

two perspectives is still a matter of debate but the second 

one appears to be more apt as it comprehensively 

signifies the ecological niche. The microbiome (1) is as 

complex as a human organ, (2) transfers to newborns and 

(3) shows distinct physiology and pathology [4-6].

Quoting Riccio and Rossano “it could be considered as a 

kind of sensor of the variations in … relationship with 

environmental energy, which mainly occurs through the 

intake of food and the elimination of waste” [7]. It acts as 

the interface between the energy obtained from food 

and energy needs. The microbially derived metabolites 

also induce epigenetic alterations in the genes 

responsible for disease modulation [8]. 

Gut microbiota: The human body harbors trillions of 

microorganisms and most of them reside in the gut [9-

10]. The gut also accommodates a sparse amount of 

pathogenic strains (~ 0.1%) of Escherichia coli, 

Bacteroides fragilis, Campylobacter jejuni, Salmonella 

enterica, Vibrio cholera, etc. All the microorganisms that 

are part of the stable gut microecological niche are 

categorized as the “gut microbiota”, which is the subset 

of the gut microbiome [11-12]. It comprises around 

99.1% bacteria (e.g., Firmicutes, Bacteroidetes, 

Actinobacteria and Proteobacteria), 0.8% archaea (e.g., 

methanogens and haloarchaeal strains), and 0.1% of 

virus (e.g., bacteriophages), fungi (e.g., Ascomycota, 

Basidiomycota and Zygomycota) and protozoa (e.g., 

amoebozoans, flagellates, Amitochondriates, 

Apicomplexans and Stramenophiles) (Table 1). 

How does gut microbiota establish and form a stable 

niche in the human body?: The gut is exposed to the 

outer environment through air, food and water. The first 

batch of the human gut microbiota (mainly bacteria) 

enter during and immediately after birth and colonize 

within days. The microorganisms such as Lactobacillus 

spp., Prevotella spp. and Sneathia spp. derived from the 

mother’s vagina during natural delivery or 

Staphylococcus, Corynebacterium and Propionibacterium 

spp. from the mother’s skin via C-section [22] dictate the 

overall gut microbial cohort, which later forms the micro-

ecosystem within a couple of years. The gut microbiota 

could also colonize the unborn’s gut in the uterus [23]. 

These prelusive bacteria develop based on nutrition 

availability (e.g., Human Milk Oligosaccharides) and lay 

the foundation for the futuristic microbial profile.
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Table 1. Key microorganisms of human gut 

Organism Major Phyla Key members References 

Bacteria Firmicutes Clostridia Cluster XIVa [Clostridium spp., Eubacterium spp., 

Roseburia spp. Blautia spp.] and Clostridia Cluster IV 

[Clostridium spp., Ruminococcus spp., Faecalibacterium spp.] 

[12-17] 

Bacteroidetes Bacteroides spp., Prevotella spp., Xylanibacter spp.  

Actinobacteria Bifidobacterium spp., Propionibacterium spp. 

Proteobacteria Escherichia coli 

Archaea Methanogens Methanobrevibacter, Methanobacteriales, 

Methanomassiliicoccales. 

[18] 

Haloarchaeal strains Haloferax miserliness and Halorubrum lipolyticum 

Virus Bacteriophages - [19] 

Fungi Ascomycota Candida spp., Cladosporium spp., Saccharomyces spp. [20] 

Basidiomycota Cryptococcus spp., Filobasidium spp., Malassezzia spp. 

Zygomycota - 

Protozoa Amoebozoans 

Flagellates 

Amitochondriates 

Ciliates 

Apicomplexans 

Stramenophiles 

- [21] 

Why is the gut microbiota a topic of significance? The 

gut microbiota plays several vital roles in the human 

body. For example, Lactobacillus helveticus and 

Bifidobacterium longum alleviate anxiety and improve 

psychological health [24]. Herein, gut microbiota effects 

on (1) the immune system, (2) digestion and nutrition, (3) 

the integrity of the gut barrier and gastrointestinal tract, 

(4) detoxification and (5) antimicrobial protection have

been discussed in brief. 

Immune system: The immune system is a composite of 

innate and adaptive immune systems. The innate 

immune system comprises monocytes, macrophages, 

neutrophils, basophils, eosinophils, mast cells, 

interleukin-10 (IL-10, an anti-inflammatory signaling 

protein), natural killer (NK) cells, gut-associated lymphoid 

tissues (GALT) along with complement and dendritic 

cells. On the other hand, the adaptive immune system is 

predominantly composed of dendritic cells and B-cells 

(fight against bacteria and viruses), and effector and 

regulatory T-cells (stimulate B-cells to make antibodies 

e.g., immunoglobulin A and also eradicate invaders). The

gut microbiota works in close synergism with these two 

systems. It aids GALT in recognizing bacterial tolerance 

and regulating the activation of NK cells and the 

functionality of T-cells and B-cells [25]. It also contributes 

to the diversification of microbe recognition capacity of 

IL-10 and modulates the human immune system [26]. The 

gut bacteria also facilitates predicting white blood cell 

counts, neutrophils, lymphocytes, monocytes, 

eosinophils and platelets [27]. Disbalance in the gut 

microbial composition encourages monocyte-like 

macrophages (MLM) accumulation and facilitates 

tumorigenesis preventing apoptosis and increasing cell 

survival instincts [28]. 
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Digestion and Nutrition: Gut microbiota ferments 

carbohydrates that survive digestion and reach the colon 

and releases beneficial metabolites predominantly 

composed of short-chain fatty acids (SCFAs, e.g., 

butyrate, acetate, and propionate). The SCFAs (mainly 

butyrate) become an energy source for the host epithelial 

cells. The SCFAs also avert the accumulation of metabolic 

byproducts such as D-lactate and in turn prevent 

neurological disorders like delirium, ataxia, and slurred 

speech, to name a few. Examples of the colonic bacteria 

involved in the fermentation are Bacteroides, Roseburia, 

Bifidobacterium spp., Fecalibacterium spp., 

Enterobacteria spp. And the bacteria from 

Lachnospiraceae family [29]. Similarly, Oxalobacter, 

Lactobacillus spp. And Bifidobacterium spp. Process 

oxalate and prevent stone formation in the kidneys [30].  

Gut microbiota positively influences lipid 

metabolism (mainly in the small intestine) and promotes 

the Lipoprotein Lipase (LPL) activity that aid in breaking 

triglycerides into fat molecules used as energy or stored 

in adipocytes [31]. It also regulates the colipase enzyme 

expression and facilitates the pancreatic lipase in lipid 

digestion [32]. It further deconjugates and dehydrates 

the primary bile acids into secondary bile acids that 

support fat emulsification and absorption [33]. For 

example, Lactobacillus curvatus and Lactobacillus 

plantarum digest and curb cholesterol build-up in the 

body [34].  

Gut microbiota releases bacterial proteinases  

(small intestine) that act synergistically with intestinal 

proteases toward modulating protein digestion [35]. 

Furthermore, it converts amino acids into signaling 

molecules and antimicrobial peptides (bacteriocins) [36]. 

Some microbes, e.g., Bifidobacterium, Clostridium, 

Lactobacillus, Escherichia and Klebsiella act as amine 

producers too [37]. Likewise, gut microbiota (e.g., 

Faecalibacterium and Bifidobacterium) also metabolizes 

polyphenols and activates glycosylated polyphenols by 

hydrolyzing carbohydrate moieties [38]. Synthesis of 

vitamin K, components of vitamin B and conjugated 

linoleic acid (CLA) are other important attributes [29]. 

Integrity of the Gut barrier and Gastrointestinal Tract: 

Gut microbiota maintains the gut barrier integrity as well 

as structural and functional aspects of the 

gastrointestinal tract. It helps to minimize stress-induced 

gastrointestinal damage via induction of the epithelial 

heat-shock proteins (in vivo study), restoration of the 

tight junction protein structure (human colonic epithelial 

cell line study), up-regulation of the mucin genes, 

secretion of defensins (mice study), regulation of NFxB 

signaling pathway and competitive inhibition of 

pathogens, to name a few. For example, through mucin 

synthesis, TJ reassembly, or 25ccluding and ZO-1 up-

regulation (mice study), the butyrate produced by the gut 

bacteria improves gut barrier permeability (human 

colonic epithelial cell line study) [38], Lactobacillus 

rhamnosus prevents cytokine-induced apoptosis of the 

intestinal cells (intestinal epithelial cell model) [39] and 

Akkermansia muciniphila helps to increment the 

endocannabinoids that can decrease the metabolic 

endotoxemia and control the gut barrier functions (mice 

study) [40]. Similarly, gut microbiota maintains tight 

junctions between cells through TLR2 mediated signaling 

(mice study) [41]. It also induces the transcription factor 

angiogenin-3 which is essential during microvasculature 

development in the intestine. The absence of 

microvasculature developed lowers the intestinal surface 

area, the thickness of the intestinal villi, curtails the 

peristalsis, increases the cell-cycle time and in turn 

impairs nutrient digestion and absorption [42]. The 

disbalance in the gut microbiome also leads to a situation 

called leaky gut where the disrupted gut barrier allows 

the translocation of the bacteria to the liver through the 

gut-liver axis that plays role in liver disease development 

and progression. 
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Detoxification: Metals in the elemental, inorganic and/or 

organic form of ingested food undergo absorption, 

distribution, biotransformation and elimination. Organic 

forms readily absorb due to their fat solubility and better 

membrane diffusivity. However, heavy metals (e.g., lead, 

arsenic, and cadmium) cause metal toxicity but gut 

microbiota mitigates metal toxification through 

biotransformation. For example, Lactobacillus aids in 

intestinal lead sequestration [43] and Faecalibacterium 

protects against acute arsenic toxicity [44]. Gut 

microbiota also absorbs and utilizes metals for its own 

needs. For example, Bacteroides, Butyricimonas, Dorea 

and Lactobacillus could consume arsenic, Coprococcus 

and Lactobacillus cadmium and lead by Desulfovibrio, 

Prevotella and Roseburia [45].  

Antimicrobial Protection: Healthy gut microbiota is 

essential for normal homeostasis. It creates, however, a 

challenging scenario for the gut epithelial linings to 

accept commensal microbiota and reject harmful ones 

(e.g., through nutrition competition, variation in the 

oxidative stress, redox potential, and production of 

bacteriocins). Unlike the large intestine, wherein the two-

layered mucus membrane prevents microbial access to 

the gut epithelial cells, the small intestine, possessing 

discontinuous and inadequate mucus layer, precludes 

harmful microbial invasion with its antimicrobial proteins 

(AMPs) and gut microbiota assistance [46-47]. The gut 

microbiota induces the Paneth cells to synthesize AMPs 

such as cathelicidins, C-type lectins, and (pro)defensins 

through the pattern recognition receptor (PRR) mediated 

mechanism. The PRR gets activated by organism-specific 

microbe-associated molecular patterns (MAMPs). 

Interactions between PRR and MAMPs trigger signaling 

pathways that promote the production of AMPs, mucin 

glycoproteins and Immunoglobin A (IgA), which in turn 

enhance the mucosal barrier functionality [48]. The AMPs 

production is driven by healthy gut microbiota, and 

bacteria such as Bacteroides theataiotaomicron and 

Lactobacillus innocua are essential in this process. The 

SCFAs produced by the microbiota also induce the AMPs 

fabrication. 

Gut microbiota also stimulates local 

immunoglobulins production. Gram-negative bacteria 

such as Bacteroides help to activate the intestinal 

dendritic cells (DCs), which in turn fuels plasma cells to 

produce secretory IgA (sIgA). The sIgA coats the gut 

microbiota and resists degradation by by the mesenteric 

lymph nodes, ensuring that the bacterial proteases [49]. 

Moreover, DCs loaded with gut microbiota are restricted 

to the mucosal layers systemic immune system remains 

unaffected by the immune responses around the gut 

microbiota [50]. 

Gut Dysbiosis: Every human body has a unique stable gut 

microbiome (which varies over time due to various 

factors discussed later), and the relative proportion of 

specific taxonomic groups vary greatly. Once the stable 

gut microbiota establishes, the core composition shapes 

futuristic bacteria in conjunction with factors such as 

food and prevalent diseases. However, any substantial 

alteration leads to gut disbalance known as gut dysbiosis 

resulting in health aberrations such as obesity, 

cardiovascular diseases, hypertension, diabetes, and 

inflammatory bowel disease. On the other hand, the 

increment of certain bacteria is good for cardiovascular 

health. For example, domination from some bacteria 

from Firmicutes phylum such as Lactobacillus reuteri is 

linked with increased High-density Lipoproteins is good 

for health [51], and Akkermansia muciniphila and 

Phascolarctobacterium have been linked to fat 

deposition [52]. Likewise, increased Bacteroides fragilis, 

Fusobacterium nucleatum, Porphyromonas 

asaccharolytica, Parvimonas micra, Prevotella 
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intermedia, Alistipes finegoldii and Thermanaerovibrio 

acidaminovorans have been linked to colorectal cancer 

[53]. Similarly, reduced Faecalibacterium prausnitzii, 

Erysipelotrichales, Bacteroidales and Clostridiales link to 

Corhn’s disease [54]. Decreased Bifidobacterium and 

increased Bacteroides and Enterococci might hint the 

Inflammatory Bowel Disease (IBD) [55]. The gut 

microbiota also plays roles in the gut-brain axis in a bi-

directional fashion through neural, endocrine, immune 

and humoral pathways. For example, alteration of 

healthy gut bacteria profile has been linked with central 

nervous disorders such as autism and depressive 

behaviors and gut-related issues such as IBD. Gut 

dysbiosis associated with a couple of health implications 

is highlighted in Table 2. 

Table 2. Decrement in some gut bacteria proportion during diseases 

Disease Gut bacteria References 

Autism Firmicutes 
Actinobacteria 

[21, 56, 57] 

Celiac Disease Bifidobacterium [21] 

Clostridium difficile infection Clostridium scindens 

Colorectal cancer Prevotella 
Ruminococcus spp. 
Pseudobutyrivibrio ruminis 

[21, 56, 58] 

Crohn’s disease Bacteroides 
Bifidobacteria 

[21, 56, 59] 

Depression Prevotella, Dialister 

HIV Clostridia 
Bacteroidia 
Lactobacilli 
Bifidobacteria 

[21, 56, 60-62] 

Hypertension Acetate and butyrate producers [21] 

Irritable bowel syndrome Clostridium laptum, Bifidobacteria [21] 

Obesity Bacteroides [21, 56, 63] 

Rheumatic arthritis Bifidobacteria 
Bacteroides fragilis 

[21, 56, 64] 

Type-1 diabetes Lactobacillus 
Bifidobacterium 
Blautia coccoides 
Eubacterium rectale 
Prevotella 
Actinobacteria 
Firmicutes 

[21, 56, 65] 

Type-2 diabetes Clostridium coccoides 
Firmicutes, Prevotella, Atopobium 

[21, 56, 66] 

Ulcerative colitis Lactobacilli 
Runinococcus hominis 
Faecalibacterium prausnitzii 

[21,67-69, 56] 
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Factors affecting the gut microbiome: Genetics, food, 

age, diseases and the use of medicines and antibiotics are 

some of the influencing factors that modulate the gut 

microbiota cohort throughout human life. A few of them 

are selected for further elaboration in the following 

sections. 

Host interior factors 

Birth and Age: The first meconium loaded with a few gut 

microbiota species suggests that the blueprint of the gut 

microbiome on sets at birth. Indeed, the mode of delivery 

lays the foundation for the futuristic microbiota 

composition. The initial inoculum, however, is not 

necessarily stable and diverse, but manifests into 

established composite by 3 years and resembles 40-60% 

of the adult microbiota profile; however, varies 

significantly with age [70]. It reaches a stable state at 

around 30 years but continues to stabilize up to 70 years 

[71] and is predominantly influenced by environmental

exposure, diet, life events, contraction of diseases and 

consumption of antibiotics. Human milk oligosaccharides 

(HMOs) consumed during lactation might not necessarily 

be present in the adult diet. Therefore, infants have an 

abundant presence of certain Bifidobacterium species 

such as Bifidobacterium breve, Bifidobacterium bifidum, 

Bifidobacterium longum subsp. longum (Bifidobacterium 

longum), Bifidobacterium longum subsp. infantis 

(Bifidobacterium infantis), Bifidobacterium 

pseudocatenulatum etc. compared to adults [72]. The 

Bacteroides and Bifidobacterium in young children and 

adolescents differ significantly from adults. The E. coli, 

Proteobacteria and Staphylococcus proliferate with age, 

whilst Bifidobacteria, Firmicutes and Faecalibacterium 

prausnitzii decline [73]. Such dynamics negate an 

individual’s ability to synthesize vitamin B12, increase the 

host’s tendency for DNA alterations and weaken the 

immune system in addition to a host of other health 

anomalies [74].  

Non-dietary factors 

Antibiotics: Gut microbiota contains a pool of genes that 

express antibiotic resistance. However, upon antibiotics 

administration, bacterial species with resistant genes 

competitively flourish over non-resistant bacteria 

resulting in altered microbial diversity and instability in 

the overall gut microbiota profile. Such resistant genes 

can also be transferred to the pathogenic strains. This 

phenomenon further compromises microbial recognition 

capacity of the immune system leading to several health 

issues. It further modifies the metabolome (collection of 

metabolites), increases antibiotic resistance, and impairs 

the competitive inhibitory effect on the external 

pathogens. The mechanisms by which the antibiotic 

affects the gut bacteria include inhibition of cell wall 

synthesis, protein synthesis, nucleic acid synthesis, 

membrane disruption, etc. In this regard, different 

antibiotics act distinctly. For example, meropenem, 

gentamicin, and vancomycin administration reduces the 

Bifidobacterium and butyrate-producing species and 

promotes Enterobacteriaceae. Likewise, 

Vancomycin/imipenem diminishes Lachnospiraceae and 

Ruminococcaceae bacteria that are responsible for the 

conversion of arabinitol to pentose sugars [75]. 

Dietary factors: Interactions between gut microbiota and 

diet significantly influence the metabolic response to 

nutrition and in turn human health. In general, fruits, 

vegetables, fibers, and whole plant-based foods promote 
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the richness and diversity of gut microbiota compared to 

animal-based and/or processed foods [76] and aid in the 

prevention of chronic non-communicable diseases 

including cancer. Modulating human health through 

personalized diet recommendations for individuals (with 

their unique gut microbiome) is deemed to emerge as a 

new area of diet therapy. Herein, interactions between 

food classes and gut microbiota, and resultant health 

effects are highlighted. 

Carbohydrates: Gut microbiota interacts with (1) dietary 

fibers, (2) digestible but undigested carbohydrates by the 

gut from diet and (3) endogenousglycans from the mucus 

of the host. In this set, dietary fibers are the major energy 

source for the gut microbiota, known as microbiota 

accessible carbohydrates (MACs), for brevity. The 

fibrinolytic (fiber digesting) community includes 

Roseburia, Ruminococcus, Bacteroides and 

Bifidobacterium, etc. Likewise, the glycolytic (that digest 

the gut-digestible carbohydrates, but somehow skip the 

digestion in the gut) cohort includes Lactobacillus, 

Enterococcus, Staphylococcus, E. coli, etc. These 

microbes ferment complex fibers, sugars, and 

endogenous carbohydrates resulting in SCFAs (acetate, 

propionate, butyrate), carboxylic acids (e.g., lactate, 

succinate, and formate) along with various gases namely 

CO2, H2, H2S and CH4, which could further get 

interconverted. SCFAs are the energy source for the 

intestinal epithelial cells (colonocytes). Butyrate in 

particular will be utilized by colonocytes, whereas 

acetate and propionate in the gluconeogenesis process 

by the liver as well as transported through the 

bloodstream to the brain and heart [77]. Consequently, 

reduction in fiber consumption impacts SCFAs products 

that concomitantly influence the gut microbial diversity 

that further resulting in a host of health issues. 

       Among the several available MACs (Table 3), resistant 

starch (RS) increases Lactobacilli, Bifidobacteria, 

Roseburia, Eubacteria and Ruminococcus species; RS2 

Ruminococcus bromii and Eubacterium rectale, RS3 

Faecalibacterium prausnitzii and RS4 Bifidobacterium 

adolescentis and Parabacteroides distasonis [78]. Pectin 

boosts the relative abundance of Bacteroides, 

Anaeroplasma, Anaerostipes and Roseburia, but 

decreases Alistipes and Bacteroide. Likewise, cellulose 

promotes Clostridium, Eubacterium, Ruminococcus, 

Bacteroides, etc., whilst Inulin upsurges E. rectale, 

Roseburia intestinalis and Anaerostipes caccae and 

xanthan gum fosters Roseburia, Ruminococcus, 

Bacteroides and Bifidobacterium with an increase in the 

overall SCFAs production along with resistance against 

diarrhea-causing Clostridioides difficile [79]. Similarly, 

arabinoxylans rise the butyrate-producing species such 

as Bifidobacterium [80] and xylan fermenting species 

such as Bacteroidetes [81]. Diets with low MACs promote 

mucus degrading bacteria e.g., Akkermansia muciniphila 

and Bacteroides caccae, that impair the first line of 

defense in the human gut leading to gut dysbiosis [82], 

decreased epithelial integrity and modification of 

epithelium cytokine expression [83-84]. Diets rich in 

glucose, fructose, sucrose, and lactose promote 

Bifidobacteria and decrease Bacteroides [85-86]. 

Likewise, lactose blooms Lactobacilli but tapers 

Clostridia. Artificial sweeteners (e.g., saccharin, 

aspartame) decrease Lactobacilli and Clostridia [87]. 
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Table 3. A few carbohydrates and artificial sweetener fermented by some gut microbiota 

Fermenting 

organism 

Carbohydrate References 

Bacteroides uniformis Agarose [13] 

Bifidobacteria, Bacteroides xylanisolvens, Bacteroides 
thetaiotaomicron, Bacteroides ovatus 

Alginate [15, 88] 

Bifidobacterium, Anaerostipes, Prevotella Bacterial polysaccharides [13] 

Bifidobacterium, Lactobacillus, Bacteroides Βeta-glycan [88] 

Bacteroides xylanisolvens, Escherichia coli Carrageenan [89] 

Ruminococcus, Bacteroides Cellulose [13] 

Bacteroides, Roseburia, Faecalibacterium, 
Bifidobacterium 

Fructans (inulin and FOS) [13] 

Bifidobacterium, Lactobacillus, Bacteroides  Fructooligosaccharide [88] 

Bifidoacterium, Roseburia Fructose [13] 

Akkermansia Fucoidan [88] 

Bifidobacterium Galacto oligosaccharide [88] 

Bifidobacterium, Roseburia, Eubacterium rectale Guar gum  [88] 

Bifidobacterium, Lactobacillus Gum acacia [88] 

Clostridial cluster XIVa, Bifidobacterium Hemicellulose [88] 

Lactobacillus. Bifidobacterium Lactose [13] 

Bifidobacterium Milk oligosaccharides [13] 

Akkermansia, Bacteroides Mucin and mucopolysaccharides [13] 

Peptostreptococcus, Fusobacterium, Bifidobacterium Nutriose [90] 
Bacteroides, faecalibacterium Pectin [13] 

Eubacterium rectale, Bacteroidetes, Ruminococcus 
bromii, Bifidobacterium, Akkermansia, Allobaculum 

Resistant starch II [88] 

Eubacterium rectale, Ruminococcus bromii, 
Oscillibacter, Atopobium spp., Bifidobacteria spp. 

Resistant starch III [88] 

Eubacterium oxidoreducens, Ruminococcus lactaris, 
Parabacteroides distasonis, Eubacterium rectale, 
Rumminococcus bromii 

Resistant starch IV [88] 

Bacteroidetes Saccharin (artificial sweetner) [91] 

Lactobacillus, Escherichia Sugar-alcohols [13] 

Roseburia, Bacteroides, Prevotella Xylan and arabinoxylan [13] 

Proteins: Microbial proteinases digest proteins, in 

association with proteinases and peptidases, and aid in 

protein metabolism. The gut microbiota also converts 

amino acids to signaling molecules and antimicrobial 
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peptides [92]. The presence, absence, or type of protein 

in conjunction with the levels of oxygen and 

carbohydrate significantly affect the gut microbial 

profile. For example, animal proteins increase Alistipes, 

Bilophila and Clostridia along with subtle increment in 

Eubacterium rectale and Bifidobacteria, which could 

promote bile-tolerant anaerobes and subsequent 

reduction of SCFAs along with increment in the 

production of Trimethylamine N-oxide (TMAO) thereby 

increasing the risks of cardiovascular diseases and 

Inflammatory Bowel Diseases [93]. On the other hand, 

the consumption of plant-based proteins appears to be 

favorable [94]. Whey protein discourages the growth of 

Bacteroides and Clostridia but increases Bifidobacteria 

and Lactobacilli [95]. The Bifidobacterium, Lactobacillus 

increment with concomitant Bacteroides and Clostridium 

spp. Reduction augments SCFAs production, which 

reduces inflammation and improves gut barrier and 

production of Tregs regulatory cells [96]. 

Fats: Gut microbiota positively impacts lipid metabolism 

by promoting Lipoprotein Lipase (LPL) activity and 

colipase expression [97]. However, fat type and amount 

influence the microbial cohort. Consumption of lower 

amounts of fat increases the Bifidobacterium spp. while 

higher quantities proliferate anaerobic microbes and 

Bacteroides [98]. Likewise, diets rich in saturated fats 

enhance Faecalibacterium prausnitzii. On the other hand, 

monounsaturated fats aid to reduce the overall bacterial 

load. Lard promotes Bacteroides and Bilophila growth 

whilst Bifidobacteria, Adlercreitzia, Lactobacillus, 

Streptococcus and Akkermansia muciniphila by fish-oil 

[99]. Mice studies hint at increased systemic TLR 

stimulation, inflammation of the adipose tissues and 

decreased insulin sensitivity compared to fish-oil 

consumption suggesting some relationship between 

developed gut microbiota and health issues [96]. 

However, further research is warranted to understand 

the root cause.  

Natural compounds: A variety of natural food systems 

such as vegetables, fruits and herbs contain health-

promoting and disease-preventing compounds (e.g., 

catechins, flavonols, flavones, anthocyanins, 

proanthocyanidins, phenolic acids and polyphenols) and 

gut microbiota plays important role in metabolizing these 

compounds. Gut microbiota transforms these natural 

compounds to a more active and absorbable form via 

esterase, glucosidase, demethylation, dehydroxylation 

and decarboxylation [100]. For example, polyphenols 

that are naturally present as glycosides are transformed 

to aglycones by the gut microbiota glycohydrolases, 

which are better absorbed in the intestine. Gut 

microbiota is also essential to produce active isoflavone 

metabolites with oestrogen-like activity that display 

various anti-inflammatory properties. For example, 

quercetin derived through microbial digestion possesses 

improves anti-inflammatory properties than the 

glycosylated form [101]. 

        The presence or absence of these beneficial 

compounds modulates the gut microbial composition. 

Flavonol-rich foods promote healthy gut bacteria [102]. 

Polyphenols from tea, wine and cocoa prosper the 

Bifidobacteria and Lactobacillus species with a 

concomitant reduction in the pathogenic strains such as 

Staphylococcus aureus, Salmonella typhimurium, 

Clostridium perfringens, Clostridium Histolyticum, 

Bacteroides, Salmonella typhimurium and 

Staphylococcus aureus [103]. Tea phenolics reduce 

Bacteroides spp., Clostridium spp., E. coli and Salmonella 

typhimurium [104]. Wine resveratrol promotes the 

growth of Bifidobacterium and Lactobacillus [105]. 

Anthocyanins from berries inhibit pathogens such as 

Staphylococcus, Salmonella spp., Helicobacter pylori and 

Bacillus cereus [106]. Tea catechins modify the intestine 
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mucin layer toward modulating adhesion and 

colonization of the bacteria in the gut [107].  

CONCLUSION 

The gut microbiome, the ecological niche formed by the 

gut microbiota, is influenced by factors such as birth, age, 

antibiotics, diseases, food, etc. It interacts with the outer 

environment through food, water, and air. More 

importantly, food and water are the major influencing 

factors through which the gut microbiome could get 

modified and in turn modulate human health. For 

example, consumption of an animal-protein-rich diet 

appears to reduce Roseburia and Eubacterium rectale 

which are associated with increased risks of IBD. On the 

other hand, the presence of MACs increases 

Lactobacillus, Ruminococcus, Eubacterium rectale and 

Roseburia and the overall SCFA production. Probiotics 

and polyphenols favor beneficial Bifidobacterium and 

lactic acid bacteria and reduce the enteropathogenic 

Clostridia species. The metabolites formed during this 

process also play critical roles in antimicrobial protection 

and immunomodulation. This brief review provides a 

synopsis of the gut microbiota and its interplay with diet 

and health. Diet-induced health modulation could hold a 

promising future via the pathway of inter-dependent 

micro-ecosystem of food, gut microbiome and human 

health toward improving human health. 

List of Abbreviations: IBD: inflammatory bowel diseases, 

MAC: microbiota accessible carbohydrates, SCFA: short-

chain fatty acids, LPL: lipoprotein lipase, TMAO: 

Trimethylamine N-oxide, RS: resistant starch, HMO: 

human milk oligosaccharides, DNA: deoxyribonucleic 

acid, DC: dendritic cells, AMP: antimicrobial proteins, 

MAMP: microbe-associated-molecular patterns, NFxB: 

nuclear factor kappa-light-chain-enhancer of activated B 

cells, CLA: conjugated linoleic acid, MLM: monocyte-like 
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