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ABSTRACT 

Background: The probiotics’ auto-aggregation and biofilm formation abilities have a significant role in the development 

of biotechnological processes. 

Objective: The aim of this study was to evaluate the biofilm formation and auto-aggregation abilities of novel, targeted 

aqua-probiotics isolated from aquatic organisms. 

Methods: The biofilm formation abilities of Lactobacillus delbrueckii str. UZ-1, Lactiplantibacillus plantarum str. R3, 

Lactococcus str. UZ-2, Enterococcus faecium str. R2, Pediococcus acidilactici str. N from the culture collection of the 

Microbiology of the Academy of Sciences of the Republic of Uzbekistan, Bacillus subtilis str. 1R, Bacillus 

amyloliquefaciens str. 4R and from the culture collection of the Southern Federal University of Russa and 

Lacticaseibacillus rhamnosus str. 1A and Enterococcus str. 9-3 from the culture collection of the Armenian National 

Agrarian University were assessed. 

Results: According to the investigations, the biofilm formation abilities of Lactobacillus delbrueckii str. UZ-1, 

Lactiplantibacillus plantarum str. R3, Lactococcus str. UZ-2, Enterococcus faecium str. R2, Pediococcus acidilactici str. 
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N, Bacillus subtilis str. 1R, Bacillus amyloliquefaciens str. 4R, Bacillus amyloliquefaciens str. 5R, Lacticaseibacillus 

rhamnosus str. 1A and Enterococcus str. 9-3 were 0.119 ± 0.05D, 0.113 ± 0.065D, 0.196 ± 0.04D, 0.116 ± 0.01D, 0.152 ± 

0.05D, 0.74 ± 0.15D, 2.621± 0.55D, 1.831 ± 0.45D, and 0.227 ± 0.04D and 0.483 ± 0.15D respectively. The highest rate 

of auto-aggregation was shown by Bacillus amyloliquefaciens str. 5R, and Bacillus amyloliquefaciens str. 4R was the 

strain with the highest ability to form biofilm. These two Bacillus strains are also distinguished by the highest DNA 

protective properties and relatively low antioxidant activity. Despite the fact that Bacillus amyloliquefaciens str. 5R 

showed the highest rate of auto-aggregation after 2 hours, this strain showed the lowest level of auto-aggregation 

among the studied strains after 24 hours. The Enterococcus str. 9-3 strain with the highest antioxidant activity showed 

0.483 ± 0.15D biofilm formation ability.  

Conclusion: The novel targeted aquaprobiotics have distinct biofilm formation and aggregation properties, which are 

important to consider when planning appropriate biotechnological processes, requiring specific membrane properties 

of probiotics. 

Keywords: Lactobacilli, aqua-probiotic, antioxidant activity, biofilm formation, aggregation, Enterococcus str. 9-3 

    Graphical Abstract: Membrane properties of novel targeted aquaprobiotics. 
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INTRODUCTION 

Food-related problems span the environmental, social 

and economic sectors, with resource scarcity, ecosystem 

degradation and climate change at the center of these 

challenges [1-7]. At present, despite the rapid 

development of biotechnologies, “negative” processes in 

ecology are deepening [8-9]. Among them, the issues of 

degradation of terrestrial-aquatic ecosystems, loss of 

biodiversity, and excess emissions of greenhouse gases 

exist, and, as a result, malnutrition and hunger are 

especially acute [10]. These problems are exacerbated in 

extreme conditions [11]. The problem of the spreading of 
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antibiotic resistance is also to some extent related to 

food safety [12-16]. However, the key issue of food safety 

has been and remains the fight against foodborne 

pathogens [17-20]. 

Water bodies are an important source of food for 

people and animals around the world [21-23]. Even the 

diet of some vegetarians (pescatarian) contains fish [24]. 

In recent years, a lot of research on aquatic organisms 

and their pathogens has been carried out [25-30]. Phage 

and probiotic therapies are considered as alternatives to 

antibiotics in combating fish pathogens [31-39]. It is 

known that probiotics are live micro-organisms that have 

a beneficial effect on the host organism, which can be a 

human [40-44], an animal, a plant or a soil [45-47]. 

Currently, when isolating or obtaining probiotics, the 

features of the host-microbe interaction are considered. 

Although the benefits of Escherichia coli probiotics 

have also been historically proven [48–52], lactic acid 

bacteria remain the most widely used probiotics [53–58]. 

In addition to antagonistic activity against pathogens, the 

probiotic potential of bacterial strains is largely 

determined by the physicochemical properties of the 

surface of bacterial cells, such as the ability to auto-

aggregate (the first stage of adhesion) and the ability to 

form biofilm [59-60]. It has recently been found that the 

membrane characteristics of fish lactobacilli and E. coli 

may differ from those of non-aquatic organisms, which 

may affect the effectiveness of the use of non-fish 

probiotics in aquaculture and fish production [61]. 

The aim of this study was the assessment of biofilm 

formation and auto-aggregation abilities of the novel 

targeted aqua-probiotics from the microbial collections 

of the Armenian National Agrarian University (Armenia), 

Southern Federal University of Russia (Russia) and 

Institute of Microbiology of the Academy of Sciences of 

the Republic of Uzbekistan (Uzbekistan). 

METHODS 

Probiotic strains and culture media: The probiotic 

bacterial strains of fish or shrimp originate from the 

microbial collections of the Armenian National Agrarian 

University, Southern Federal University of Russia, and the 

Institute of Microbiology of the Academy of Sciences of 

the Republic of Uzbekistan [61]. Lacticaseibacillus 

rhamnosus str. 1A, Enterococcus str. 9-3, Bacillus subtilis 

str. 1R, Bacillus amyloliquefaciens str. 4R, Bacillus 

amyloliquefaciens str. 5R, Lactobacillus delbrueckii str. 

UZ-1, Lactiplantibacillus plantarum str. R3, Lactococcus 

str. UZ-2, Enterococcus faecium str. R2, and Pediococcus 

acidilactici str. N were used in this study (Table 1). 

Table 1. Sources of the probiotic strains* 

  Strains Sources 

Lactobacillus delbrueckii str. UZ-1 Intestinal microbiota of carp^ 

Lactiplantibacillus plantarum  str. R3 Intestinal microbiota of carp^ 

Lactococcus str. UZ-2 Shrimp intestinal microbiota^ 

Enterococcus faecium str. R2 Intestinal microbiota of carp^ 

Pediococcus acidilactici str. N Intestinal microbiota of carp^ 

Bacillus subtilis str. 1R Intestinal microbiota of carp^^ 

Bacillus amyloliquefaciens str. 4R Intestinal microbiota of carp^^ 

Bacillus amyloliquefaciens str. 5R Intestinal microbiota of carp^^ 

Lacticaseibacillus rhamnosus str. 1A Intestinal microbiota (Salmo ischchan) ^^^ 

Enterococcus str. 9-3 Intestinal microbiota (Salmo ischchan)^^^ 

*- The strains were kindly provided by: 

^ Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan 

^^ Don State Technical University 

^^^ Armenian National Agrarian University 
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DeMan Rogosa and Sharpe (MRS) broth were used 

to grow the probiotic strains. After incubation (at 37 °C 

for 48 h), bacterial cultures were centrifuged (1165× g for 

15 min), washed twice, and resuspended in sterile 

phosphate-buffered saline (PBS, pH 7) to an optical 

density of 0.5 McFarland standard (OD600), which 

corresponded to the bacterial density of 108 CFU/ml. The 

OD600 was measured using a spectrophotometer (Stat Fax 

3300, Awareness Technology, Palm City, USA). 

Biofilm formation assessment: The ability to form a 

biofilm was evaluated by a qualitative analysis that was 

based on the attachment of bacteria to the surface of 

polystyrene using coloring with crystal violet [61]. In 

particular, 200 μl of overnight bacterial suspensions 

(OD600 = 0.5) were transferred to polystyrene 96-well 

plates (Biomat, Ala, Italy) and incubated for 48 h at 37°C. 

Next, 25 μl of 0.5% crystal violet was added to each well 

and the plates were left for 15 minutes at room 

temperature. After aspiration of the contents, the wells 

were washed 3 times with PBS. Extraction of crystal violet 

was carried out with 96% ethanol. The optical density 

was then measured photometrically at 540 nm (Stat Fax 

2100, Awareness Technology, Perchtoldsdorf, Austria). 

Auto-aggregation assessment: The ability to auto-

aggregate was studied according to Collado et al. [62]. 

The optical density (OD600) of the homogenized 

bacterial suspension was measured. Measurements were 

repeated after 2 and 24 hours of incubation at 37°C under 

static conditions. The percentage of auto-aggregation 

was calculated by the formula: 

𝐴 = (1 −
𝐴𝑡𝑖𝑚𝑒

𝐴0
) ∗ 100 % 

where Atime is the absorbance of the mixture at 2 and 24 

h, and A0 is the absorbance at the starting point. 

The experiments were repeated five times and the 

data was expressed as the mean ± standard deviation. A 

t-test (excel 2016) was performed to determine the

statistical significance (p < 0.05). 

RESULTS 

Biofilm formation ability: The results of current 

investigations on bacterial biofilm formation abilities are 

given in Table 1. According to the data, the biofilm 

formation abilities of Lactobacillus delbrueckii str. UZ-1, 

Lactiplantibacillus plantarum str. R3, Lactococcus str. UZ-

2, Enterococcus faecium str. R2, Pediococcus acidilactici 

str. N, Bacillus subtilis str. 1R, Bacillus amyloliquefaciens 

str. 4R, Bacillus amyloliquefaciens str. 5R, Lactica-

seibacillus rhamnosus  str. 1A and Enterococcus str. 9-3 

were 0.119 ± 0.05D, 0.113 ± 0.065D, 0.196 ± 0.04D, 0.116 

± 0.01D, 0.152 ± 0.05D, 0.74 ± 0.15D, 2.621± 0.55D, 1.831 

± 0.45D, 0.227 ± 0.04D and 0.483 ± 0.15D respectively 

(Table 1).  

Auto-aggregation ability: The auto-aggregation abilities 

of Lactobacillus delbrueckii str. UZ-1, Lactiplantibacillus 

plantarum R3, Lactococcus str. UZ-2, Enterococcus 

faecium str. R2, Pediococcus acidilactici str. N, Bacillus 

subtilis str. 1R, Bacillus amyloliquefaciens str. 4R, Bacillus 

amyloliquefaciens str. 5R, Lacticaseibacillus rham-

nosus str. 1A and Enterococcus str. 9-3 after 24 hours 

were 88. 917 ± 3.05 %, 97.604 ± 2.98 %, 96.336 ± 4.12 %, 

93.726 ± 3.87 %, 93.82 ± 2.67 %, 96.336 ± 2.45 %, 95.194 

± 2.17 %, 79.782 ± 3.87 %, 94.34 ± 2.98 % and 95.622± 

2.99 % respectively (Table 2). In addition, the results 

show that the investigated probiotics differ from each 

other in the rate of auto-aggregation; differences were 

shown both after 2 and 24 hours of incubation (Figure 1). 

The highest rate of auto-aggregation was detected for 

the strain of Bacillus amyloliquefaciens str. 5R. After 2 

hours, the strain showed 42.77 ± 0.57 % of auto-

aggregation ability, while the percentage of auto-

aggregation for the Lactiplantibacillus plantarum str. R3 

was 8.21 ± 0.11 % only. 
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Table 2. Biofilm formation and auto-aggregation abilities of novel targeted aqua-probiotics, average ± standard deviation 

Strains Biofilm formation ability; D Auto-aggregation, 24 hours; % 

Lactobacillus delbrueckii str. UZ-1 0.119 ± 0.05 88.917 ± 3.05 

Lactiplantibacillus plantarum str. R3 0.113 ± 0.065 97.604 ± 2.98 

Lactococcus str. UZ-2  0.196 ± 0.04 96.336 ± 4.12 

Enterococcus faecium str.  R2 0.116 ± 0.01 93.726 ± 3.87 

Pediococcus acidilactici str. N 0.152 ± 0.05 93.82 ± 2.67 

Bacillus subtilis str. 1R 0.74 ± 0.15 96.336 ± 2.45 

Bacillus amyloliquefaciens str. 4R 2.621± 0.55 95.194 ± 2.17 

Bacillus amyloliquefaciens str. 5R 1.831 ± 0.45 79.78227 

Lacticaseibacillus rhamnosus str. 1A  0.227 ± 0.04 94.34 ± 2.98 

 Enterococcus str. 9-3 0.483 ± 0.15 95.622± 2.99 

Figure 1. Auto-aggregation abilities of novel targeted aqua-probiotics: Lactobacillus delbrueckii str. UZ-1 (isolated from the 

intestinal microbiota of a carp), Lactiplantibacillus plantarum  str. R3 (isolated from the intestinal microbiota of a carp), 

Lactococcus str. UZ-2 (isolated from a shrimp intestinal microbiota), Enterococcus faecium str. R2 (isolated from the 

intestinal microbiota of a carp), Pediococcus acidilactici str. N (isolated from the intestinal microbiota of a carp), Bacillus 

subtilis str. 1R (isolated from the intestinal microbiota of a carp), Bacillus amyloliquefaciens str.  4R (isolated from the 

intestinal microbiota of a carp), Bacillus amyloliquefaciens str. 5R (isolated from the intestinal microbiota of a carp), 

Lacticaseibacillus rhamnosus str. 1A (isolated from the intestinal microbiota of Salmo ischchan) and Enterococcus str. 9-3 

(isolated from the intestinal microbiota of Salmo ischchan). 

DISCUSSION  

Generally, probiotic therapy is also proposed as an 

alternative to antibiotics in the fight against fish 

pathogens [37-38]. At the same time, for the first time, 

probiotics were used to stimulate the growth of aquatic 

organisms back in 1986 [63]. Later, probiotics of various 
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origins were used for this purpose, which had a 

significant effect on the growth of pathogens in fish [64-

69]. Among the pathogens of hydrobionts, represent-

tatives of the genus Vibrio deserve close attention, since 

some halophilic vibrios are the causative agents of 

vibriosis [70]. Fish vibriosis is widespread in the seas and 

brackish waters, affecting both marine and coastal 

freshwater fish of various species, including salmon, cod, 

eel, herring, perch, and flounder [71]. Along with fish 

vibriosis, Aeromonas septicemia, edwardsiellosis, colum-

naris and streptococcus, as well as a number of other 

diseases, are largely responsible for economic losses in 

aquaculture production [72-84]. 

To stay “alive” under various stress conditions, 

bacteria also use different means, including the 

properties of their membranes: auto-aggregation, cell 

surface hydrophobicity, and the ability to form biofilm, 

which are largely interconnected. Interestingly, the 

results of recent studies show that the membranes of 

intestinal bacteria have their own characteristics in 

aquatic and terrestrial animals [61]. The species 

specificity of cell surface hydrophobicity of fish intestinal 

bacterial isolates has been described in relation to the 

bacterial growth medium. A relationship has also been 

shown between membrane auto-aggregation and biofilm 

formation [61]. Given this circumstance, the use of 

probiotics isolated from fish as probiotics (targeted 

probiotics) for fish seems to be relevant [61]. It is also 

known that the ability of pathogens to form biofilms can 

lead to the infections [85]. On the other hand, biofilm 

formation ability of lactobacilli protects the host from the 

infections [86-87]. In addition, constitutive or stress-

induced bacterial aggregation has been shown to play an 

important role in bacteria-host interactions [88-89]. The 

candidates for targeted probiotics with lactic acid origin, 

including Lactiplantibacillus plantarum, Lactiplanti-

bacillus pentosus, Lactobacillus acidophilus, Levilactobac-

illus brevis, Pediococcus pentosaceus, and Pedio-coccus 

acidilactici were also isolated and characterized by 

Mazlumi and coauthors [90]. Auto-aggregations of these 

bacteria was in the range from 01.3 ± 0.5 to 82.6 ± 1.4% 

[90]. 

In the presented study, the membrane properties, 

such as biofilm formation and an auto-aggregation 

abilities of a number of fish/shrimp targeted probiotics 

were studied. Previously, it has been shown that all the 

probiotics described above (with the exception of 

Bacillus spp.) not only can inhibit the growth of Vibrio 

sp.129 by 100% within 16 hours, but also have a high 

antagonistic activity against major fish pathogens [61].  

According to the presented study, no correlation 

was found between the ability to form a biofilm and auto-

aggregation in the studied probiotic strains (Table 2).  The 

highest rate of auto-aggregation was shown by Bacillus 

amyloliquefaciens str. 5R (Figure 1) and Bacillus amylo-

liquefaciens str. 4R was the strain with the highest ability 

to form biofilm (Table 2). These two Bacillus strains are 

also distinguished by the highest DNA protective 

properties and relatively low antioxidant activity. Despite 

the fact that the strain 5R showed the highest auto-

aggregation percentage after 2 hours of incubation 

(highest aggregation rate), after 24 hours this strain 

showed the lowest level of auto-aggregation among the 

studied strains. Auto-aggregation abilities of Lacto-

bacillus delbrueckii str. UZ-1, Lactiplantibacillus plant-

arum str. R3, Lactococcus str. UZ-2, Enterococcus faecium 

str.  R2, Pediococcus acidilactici str. N, Bacillus subtilis str. 

1R, Bacillus amyloliquefaciens str. 4R, Lacticaseibacillus 

rhamnosus str. 1A and Enterococcus str. 9-3 after 24 

hours were 79.782 ± 3.87 % vs. 88.917 ± 3.05 %, 97.604 ± 

2.98 %, 96.336 ± 4.12 %, 93.726 ± 3.87 %, 93.82 ± 2.67 %, 

96.336 ± 2.45 %, 95.194 ± 2.17 %, 94.34 ± 2.98 % and 

95.622 ± 2.99%, respectively (Table 2). The Enterococcus 

str. 9-3, strain with the highest antioxidant activity, 

showed 0.483 ± 0.15D biofilm formation ability. 

According to the presented study, the probiotics studied 
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species in Armenia, Uzbekistan and Russia; they are 

already ready for use in fish farming/industry in these 

countries, where special properties of membrane biofilm 

formation and autoaggregation are needed. 
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by us have more pronounced auto-aggregation 

properties compared to the strains described by Mazlumi 

and coauthors [91]. However, the results of our studies 

and the studies of these authors (unfortunately, we were 

unable to find scientific investigations by other authors in 

this direction) are difficult to compare, since, despite the 

same described conditions, the studies were carried out 

non-simultaneously. A complete assessment of auto-

aggregation properties can only be given based on 

comparable experiments. 

CONCLUSION 

Various biotechnological processes, including fish 

production, require probiotics with different membrane 

properties. According to the present studies, probiotics 

isolated from hydrobionts, in addition to high anta-

gonistic activities against fish pathogens, also have 

pronounced/specific biofilm formation and aggregation 

characteristics, which seems important for bio-

technological processes requiring specific membrane 

properties. Further comparative studies are needed to 

assess the probiotic potential of probiotic strains 

obtained by us and other authors for various 

hydrobionts, including different fish species. However, 

the probiotic bacteria used in the presented study have 

already been tested on a number of commercial fish 
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