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ABSTRACT 

There has been growing interest in medical research focused on natural products. As a result of the ancestral knowledge 

passed down through generations and the demands of our current era, there has been an increased demand for new 

strategies and the search for new molecules with therapeutic potential. This increase is due to new technologies, the 

evolution of diseases, and the emergence of new ones. In this review, we focus on the work and relevance of Curcumin 

research, which is one of the main components of Curcuma longa. Additionally, we explore Amaranth in its various 

reported species and components (seed, leaf, stem) studied. The focus is on the anti-inflammatory therapeutic potential, 

not only in one, but in different diseases characterized by inflammation and bone destruction. We aim to analyze the 

possible molecular mechanisms by which curcumin and amaranth act as well as data currently obtained from different 

studies. This review aims to open a new perspective to the investigation of these compounds in the field of diseases 

characterized by inflammation and bone destruction. 
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INTRODUCTION 

Currently, several inflammatory diseases affect the 

bones, such as rheumatoid arthritis, osteosarcoma, 

osteoarthritis, osteoporosis, and bone metastasis caused 

by cancer. Today several molecules and drugs with anti-

inflammatory potential, such as anti-TNF (tumor necrosis 

factor), have been investigated [1]. Within inflammatory 

diseases, some interest has been generated by immune-

mediated inflammatory diseases (IMIDs), such as 

rheumatoid arthritis (RA) disease [2]. This has increased 

the search for molecules with anti-inflammatory 

potential. However, while current treatments and drugs 

offer advantages such as symptom reduction, they do not 

offer a cure and demonstrate gastrointestinal and 

cardiovascular adverse effects [3]. Consequently, and 

based on the attributes given to certain plants, there has 

been an increase in the research of extracts of certain 

plants. It should be noted that the application of 

phytotherapy is not recent as it has origins since ancient 

times. Phytotherapy is understood as the application 

and/or use of herbs as medicinal tools to treat different 

diseases. Over time, immigration made the exchange and 

transfer of medicinal herbs more and more feasible as 

cultures and knowledge were exchanged. Nowadays, as 

a consequence of diseases, antibiotic resistance, drug 

problems, and more, researchers have focused their 

attention on investigating the biomolecular effects of 

medicinal herbs [4]. This has led to the development of 

functional food science, which is focused on the 

discovery and development of bioactive food 

compounds. Bioactive compounds are found in food and 

have a bioactive impact on human health [5]. Functional 

foods of plant origin have been reported to exhibit 

activities such as anti-proliferative, antioxidant and anti-

cancer effects. These activities are often attributed to 

natural substances produced by plant metabolic 
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pathways, such as phenolic compounds (phytochemicals) 

[6]. Some plants, such as curcumin and amaranth, have 

garnered attention for their anti-inflammatory potential. 

Curcumin is a phenolic bioactive compound with 

pharmacological activities, such as anti-inflammatory, 

antioxidant, anticancer, and antiangiogenic [7]. On the 

other hand, amaranth has been used since ancient 

civilizations such as the Inca, Mayan, and Aztec. These 

cultures used amaranth to prepare tortillas and drinks, 

utilizing both the seeds and leaves. They also consumed 

amaranth as a vegetable. While amaranth was one of the 

primary food crops during the pre-Columbian era due to 

its nutritional properties, its significance resides in the 

religious aspect, mainly in ceremonies. Similarly, 

amaranth held religious importance in India and Nepal. 

However, it is currently cultivated in Asia, Africa and 

Europe due to its content of proteins, fats, macro, and 

micro elements [8-9]. Amaranth is a staple food and is 

also consumed for its medicinal properties [10]. It is 

important to note that in some cases some people do not 

use the word “herbal”, as previously mentioned, but 

rather, they use the word “phytotherapy.” This entails 

the significance of studying plants with therapeutic 

potential, which lies mainly in the need to find new 

molecules with therapeutic potential. Secondly, it 

involves the discovery of various plants that demonstrate 

therapeutic potential. This applies to curcumin as well as 

amaranth and remembering that the use of phytotherapy 

has been one of the oldest ways of treating ailments. 

Modern phytotherapy is currently based on scientific and 

profound knowledge, encompassing pharmacodynamic 

and pharmacokinetic aspects as well as preclinical and 

clinical studies. However, it is essential not to overlook 

the origins of the plants and the culture that possess 

fundamental knowledge in order to determine which 

have or show a pattern with biomedical interest. Another 

aspect to consider is that while bioactive compounds 

originate from food, they must be dosed according to 

bioavailability, metabolic processes, and among other 

considerations in order to guarantee efficacy in 

promoting health in disease prevention or treatment and 

avoiding toxic and ineffective amounts [11]. 

Furthermore, it is critical to recognize that a every part of 

a plant does not need to exhibit the same potential or 

qualities. For instance, curcumin, derived from the 

rhizomes of the plant, and amaranth, where both leaves 

and grains are being studied, exemplify this variability. 

This review is oriented to the work, evidence, and 

potential of curcumin and amaranth as anti-

inflammatory agents in various inflammatory diseases. 

The information in this review article was obtained 

from a rigorous search in reputable databases including 

PubMed, Redalyc, Scopus, Web of Science, and Food 

Science Publisher for insuring data reliability.  

Curcumin: One of the most studied varieties is Curcuma 

longa L., and its derivatives, consisting of approximately 

235 compounds have been identified, which are mainly 

phenolics and terpenoids. However, curcuminoids and 

essential oils, which have bioactive potential, are 

predominantly found in the rhizomes. The main and most 

active curcuminoid among them is known as curcumin [4, 

12-14].   Curcumin is a yellow polyphenolic substance

widely used in different ways including to give flavor and 

color to food, in tea, and for beauty and health. It has 

been used to treat gas, colic, toothache, during the 

menstrual period, stomach problems, wounds and scars, 

digestive problems, as an antibacterial agent, for vision, 

dental problems, and as an anti-inflammatory agent, 

among other applications [12, 14].  The use of curcumin 

has not only been of empirical use, but several studies 

have described its anti-inflammatory, antimicrobial, 
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a) 

b) 

antioxidant and bone resorption prevention properties in 

certain diseases such as periodontal diseases [15]. 

Commercial curcumin is poorly soluble in water; 

however, it can be dissolved in ethanol, methanol, 

dimethyl sulfoxide (DMSO), or ethyl acetate, which is of 

relevance when performing experiments both in vitro 

and in vivo [16]. Given curcumin’s low absorption rate, it 

is important to consider the most suitable medium for its 

dissolution in order to improve its bio-dissolution [17- 

18]. 

Curcumin is also known as diferuloylmethane, and 

its IUPAC name is (1E,6E)-1,7-bis(4-hydroxy-3-

methoxyphenyl)-1,6-heptadiene-3,5-dione. Its chemical 

formula is C21H20O6 (Fig 1) and has a molecular weight of 

368. 38. The absorption spectrum of curcumin shows two

intense bands, one in the visible region ranging between 

410 and 430 nm, and the other in the UV light region with 

a maximum of 265 nm. For the application of curcumin, 

it should also be considered that degradation occurs in 

aqueous organic solutions and increases with rising pH 

levels. However, degradation decreases if curcumin binds 

to lipids, liposomes, albumins, and other macromolecular 

systems. Thus, it is possible to prepare stable solutions of 

curcumin in culture medium containing 10% Fetal Bovine 

Serum (FBS) [19]. 

Figure 1. Chemical structure of curcumin. (a) The enol and (b) keto forms of curcumin are common structures of the drug. 

Created using BioRender.com. 

Curcumin attenuates inflammatory response: Several 

studies have evaluated and affirmed that curcumin has 

certain antioxidant and anti-inflammatory activity. 

Rheumatoid arthritis: Rheumatoid arthritis (RA) is an 

inflammatory autoimmune disease, which has been 

reported to affect between 0.5 and 1% of the world's 

elderly population [20]. RA has different hallmarks such 

as fibroblast hyperplasia and is therefore a focus of 

research. Currently, the effect of curcumin on the 

proliferation of synovial fibroblasts has been tested, 

demonstrating inhibition of their growth and induction of 

apoptosis through the cyclooxygenase COX-2 pathway 

[21]. Additionally, a metabolomic profile of primary 

fibroblasts (FLS) stimulated with TNF-α and treated with 

curcumin reaffirms the effect of curcumin on COX-2 (Fig 

2) and the inhibition of Il-6, IL-8, MMP-1 and MMP-3 [22].

Bone erosion is another hallmark of RA, making it 

important to evaluate the effect of curcumin on 

osteoclastogenesis.  It is reported that curcumin inhibits 

osteoclast gene potential by suppressing MAPK/ RANK/c-

Fos/NFATC1 signaling pathways [23]. 
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There are several models of rheumatoid arthritis; 

however, one of the most widely used is the murine 

model of collagen-induced arthritis (CIA). In the CIA 

model, the effect of curcumin on the expression of 

proinflammatory cytokines, such as TNF-α, IL-1β, INFγ 

and IL-6 (Fig 2) has been studied, revealing a reduced 

expression of TNF-α, IL-1β and suppression in the 

production of INFγ, IL-6 and IL-17 These findings suggest 

that curcumin exerts an anti-inflammatory effect by 

inhibiting proinflammatory mediators and intervening in 

the humoral and cellular immune responses [24-26]. 

Curcumin is also known to inhibit the mTOR pathway (Fig 

2) in a murine CIA model, in addition to inhibiting the 

levels of IL-1β, TNF-α, MMP-1 and MMP-3, which are 

proinflammatory cytokines [27]. Curcumin has been 

shown to induce improvement in paw swelling, arthritis 

index score, inflammation, and subsequent joint 

development [28-29]. Given the efforts to investigate and 

elucidate the mechanisms and effects of curcumin in 

rheumatoid arthritis, this compound has also been 

studied in patients with mild to moderate disease 

severity. It is reported that curcumin has fewer adverse 

effects than diclofenac sodium and acts similarly to anti-

TNFs [30]. Concerning clinical symptoms, such as visual 

analog scale (VAS), disease activity, and rheumatoid 

factor (RF), curcumin has been shown to improve 

response and act as an analgesic and anti-inflammatory 

agent in RA [31].  However, it is necessary to emphasize 

that further research and studies are needed to conduct 

a long-term study of curcumin in patients with 

rheumatoid arthritis. 

 

Osteosarcoma: Osteosarcoma is a malignant bone tumor 

whose hallmark is metastasis. Knowing this, the potential 

of curcumin has been investigated not only as 

inflammatory properties but also its antiproliferative 

effects. Several studies have evaluated curcumin’s 

impact on different osteosarcoma cell lines such as SAOS-

2 (HTB-85), U2OS (HTB-96), HOS, 143B, LM5, Hu09, MG-

63. These studies show that curcumin can inhibit cell 

growth through apoptotic processes, such as inducing a 

decrease in the expression of the anti-apoptotic protein 

BCL-2 [32-35], specifically in the case of MG-63 cells. It 

has been shown that curcumin can decrease the 

proliferation of these cells without affecting healthy 

osteoblasts. Additionally, curcumin inhibits genes such as 

Smad4, NFκB p65, and cyclin D3 [36-37]. 

In order to further clarify the mechanisms by which 

curcumin acts in osteosarcoma, several studies have 

been conducted using cell lines to investigate its effect on 

signaling pathways, genes, and processes. These studies 

have reported that curcumin is able to inhibit the Wnt/β-

catenin pathway (Fig 2), which promotes tumorigenesis 

and metastasis of osteosarcoma [38-39]. Additionally, 

curcumin reduces estrogen-related receptor alpha 

expression (ERRα), triggering inhibition of cell 

proliferation. It also suppresses growth under hypoxic 

conditions by inhibiting the Notch1 signaling pathway 

[40-41].  Furthermore, it has been suggested that 

curcumin acts by regulating the ITPR1 gene, which 

encodes the intracellular calcium release channel type 1 

InsP3R, and thereby binds to sensitized cells and 

cytochrome c to apoptotic stimuli [42]. On the other 

hand, curcumin induces cell G0/G1 phase arrest via the 

p-JAK2/p-STAT3 pathway, suggesting that the 

suppression of cell growth by curcumin occurs through 

this pathway [43]. 

It can be summarized that the potential of curcumin 

as a treatment for osteosarcoma is promising. 

Researchers have begun to develop and analyze the 

mechanisms of various curcumin analogs such as EF24, 
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DK1, and GO-Y078, which have demonstrated favorable 

results in apoptosis and antigenic activity [44-47]. 

Osteoarthritis: Osteoarthritis is one of the most common 

diseases belonging to the group of joint diseases and as 

well as in arthritis. The effect of curcumin in 

osteoarthritis (OA) has also been evaluated in different 

models, such as in a mouse model of medial meniscus 

destabilization (MMD). It has been reported that 

curcumin suppresses the expression of proinflammatory 

mediators such as IL-1β and TNF-α, as well as reducing 

the progression of OA disease, cartilage erosion, and 

synovitis [48-49]. This coincides with other studies 

reporting that curcumin is able to decrease the 

expression of MM-3, MyD88, p-IκBα, NF-κB, TNF-α, IL-1β, 

and IL-6 (Fig 2), upon induction of OA by monosodium 

iodoacetate (MIA), and thereby reducing the 

inflammation [50-51].  

In order to elucidate the mechanism of action of 

curcumin in OA, studies have focused on different 

targets. It has been reported that curcumin inhibits 

MMP3 expression in OA synovial cells. This inhibition 

promotes the inhibition of cell proliferation, reduction of 

cell viability, increased apoptosis and alleviation of 

inflammation [52]. Additionally, curcumin reduces gene 

expression and/or proteins involved in pain, such as PGE2 

and NGF [53]. Curcumin also inhibits oxidative stress-

induced chondrocyte apoptosis through the expression 

of SIRT, which inhibits the PERK-eIF2α-CHOP pathway 

[54]. Moreover, the chondroprotective role of curcumin 

is also through the AMPK/PINK1/Parkin pathway [55]. 

Another reproted pathway through which curcumin acts 

to ameliorate inflammation is Sox9/NF-kB, as it 

suppresses NF-kB activation by promoting Sox9 

expression [56]. 

It should be noted that curcumin has also been 

evaluated in patients with OA, highlighting that its 

efficacy is similar to diclofenac, which could be an 

alternative in the treatment option for patients who 

cannot tolerate the side effects of non-steroidal anti-

inflammatory drugs [57]. In addition, daily administration 

of curcumin in OA patients has been shown to decrease 

pain and inflammation, which may be due to the 

upregulation of microRNAs [58]. 

Osteoporosis: Several factors can play an important role 

in bone loss, such as menopause or due to diseases such 

as Alzheimer's or diabetes. Curcumin has been reported 

to provide an improvement in the adverse changes in the 

mechanical properties of the femur following the loss of 

endogenous estrogens [59] Additionally the effect of 

curcumin on bone microarchitecture and bone mineral 

density in APP/PS1 transgenic mice susceptible to 

osteoporosis (OP) has been reported. It showed that 

mice treated with curcumin presented a constant 

increase in trabecular bone mass, preventing a 

deterioration in bone structure [60]. Curcumin also 

prevents bone loss through coupling osteogenesis and 

angiogenesis of BMSC bone marrow stromal cells in 

hyperglycemia by blocking the NF-κB signaling pathway 

[61]. In addition, curcumin improves bone biomechanical 

properties, thereby preserving bone architecture, which 

may be due to the influence of curcumin on the activation 

of the TGF-β/Smad3/3 pathway (Fig 2) [62].  

Additionally, it has been reported that curcumin can 

attenuate bone resorption induced by dexamethasone, a 
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glucocorticoid known to induce osteoporosis with 

prolonged exposure. This can be explained by the 

demonstration that curcumin can reactivate the Wnt 

signaling pathway, which is inhibited by dexamethasone. 

It also stimulates bone remodeling by balancing the 

RANKL/OPG ratio and increases bone mechanical 

strength. It protects osteoblasts from apoptosis, which 

could be due to the activation of the ERK pathway [63-

65]. Furthermore, it has also been suggested that 

curcumin may act by regulating the EZH2/Wnt/β-Catenin 

pathway to protect and improve bone microstructure in 

the face of OP [66]. 

To clarify the role of curcumin in the processes 

leading to bone resorption, the effect on 

osteoclastogenesis has been evaluated. It has been 

shown that curcumin can reduce the production of CCL3 

in osteoclast precursors, reducing their migration, and 

thus the formation of mature osteoclasts [67]. 

Cancer-derived bone metastasis: Bone metastasis is 

caused by some types of cancer, such as prostate and 

breast cancer, which is why, just as the role of curcumin 

has been studied in other bone diseases, its mechanism 

and effect on bone metastasis has also been explored. 

Regarding bone metastasis generated by prostate 

cancer, so far, it is known that curcumin has an inhibitory 

activity of mRNA expression and levels of the CCL2 

protein, which is involved in the development of bone 

metastasis. Thus, curcumin is able to block adhesion and 

invasion of prostate cancer cells (PC-3) [68]. Additionally, 

it has been shown that curcumin also can modulate TGF- 

β signaling (Fig 2) [69]. TGF- β promotes the progression 

of cancer cells, allowing bone metastasis, so this signaling 

pathway is a focus of study. For this reason, we have 

evaluated the effect of curcumin, reaffirming what other 

studies have already mentioned that it is able to inhibit 

the TGF- β signaling pathway [70];  this is  of  relevance  

since this pathway acts in both prostate and breast 

cancer. 

Regarding bone metastasis generated by breast 

cancer, it is clear that there is the participation of 

osteolytic factors such as PTHrP induced by growth 

factors such as TGF-β. In this sense, it has been reported 

that curcumin is able to inhibit the phosphorylation of 

Smad2/3, which is mediated by TGF-β, and also blocks 

the secretion of PTHrP, providing bone protection [71]. 

Given the potential that curcumin represents in bone 

metastasis, analogs have been generated, as in the case 

of UBS109, demonstrating that this analog has antitumor 

potential. Based on studies, this analog is feasible to 

prevent bone metastasis induced by MDA-MB-231 cells. 

It also stimulates osteoblastic mineralization and 

suppresses osteoclastogenesis [72]. Additionally, it has 

restorative effects on bone marrow cell differentiation, 

which has been deregulated by metastatic cells [73]. 

Another mechanism of action by which curcumin 

acts is that it inhibits the osteogenesis of human adipose-

derived mesenchymal stem cells (hADSCs) by modulating 

the expression of miRNAs such as miR-126a-3p [74]. 

In addition to the aforementioned, it has been 

reported that curcumin intervenes with mitochondrial 

processes in cancer. It is known to affect proteins such as 

Bax, Bcl-2, and Bcl-xL and reactive oxygen species, It has 

also been reported that curcumin is able to inhibit the 
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mitochondrial Na+/Ca2+/Li+ exchanger (NCLX), thus 

generating an antitumor effect, allowing this information 

to open new perspectives for research on the 

mechanisms by which curcumin acts [75]. 

 

Figure 2. Illustration of the mechanisms of action of curcumin on different signaling pathways. Created using 

BioRender.com. 

 

Amaranth: Amaranth is part of the so-called pseudo 

cereals, and it has been reported that amaranth has a 

dual character because it is a food that has an 

appropriate nutritional level to be consumed and has 

medicinal properties. Additionally, if we consider the 

factor of climate change, and that this plant has a high 

nutritional potential, plus its medical potential and that it 

presents resistance to drought, make it a focus of interest 

for researchers in different areas [10, 76].  

Amaranth plants can reach a height of 0.8 to 1.8 m 

and produce seeds that are used for the production of oil 

or flour, while the leaves are used for salads. Historically, 

in Mexico, it has been used since ancient civilizations 

such as the Inca, Mayan, and Aztec, as it belonged to the 

staple foods. Besides being consumed for its medicinal 

properties [10], these cultures used amaranth to prepare 

tortillas and drinks; they used not only the seed but also 

the leaves, they also ingested it as a vegetable. Amaranth 

was one of the main food crops during the pre-Columbian 

era for its nutritional properties, and it is also used in 

religious ceremonies. Likewise, it acquired a religious 

importance in India and Nepal, however, it is currently 

cultivated in Asia, Africa and Europe, because it contains 

proteins, fats, macro and micro elements [8-9]. 

Amaranth belongs to the Amaranthaceae family 

and comprises approximately 70 species of plants. Each 

species has different uses according to its location and 

properties [76]. 

Regarding the chemical composition of amaranth, 

this will vary depending on the species and variety. 

However, it is known that the grain has high protein and 

lysine content. The leaves also have a high protein 

content. It can be said that the main biological 

compounds found in amaranth are proteins, fats, 

carbohydrates, vitamins and minerals [10, 76]. In some 

amaranth species, the main carbohydrate is starch, which 
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accounts for 60 % of dry grains [77]. In addition, 

amaranth seeds and leaves contain small amounts of 

polyphenols, saponins, hemagglutinins, phytin, nitrates 

and oxalates [76]. 

Amaranth plants have antioxidant properties, in 

addition to containing bioactive peptides, and influence 

the elimination of free radicals [78]. 

 

Amaranth and its anti-inflammatory potential: 

Currently, information on amaranth as a potential anti-

inflammatory molecule in bone diseases is scarce; 

however, different studies have boosted research in this 

area and in general the effect in anti-inflammatory 

diseases. 

 

Rheumatoid arthritis: As mentioned, the molecular 

mechanisms (Fig 3) by which amaranth acts are still 

unknown. However, some studies attribute the beneficial 

effects of amaranth to its secondary metabolites, such as 

phenolic compounds [79]. It has been reported that the 

phenolic compound 2-caffeoylisocitric acid (C-IA) present 

in the leaves of some species of amaranth has potential 

anti-inflammatory activity in the RAW264.7 cell line after 

accumulation of the compound. This suggests that the 

study of this compound at the in vivo level could provide 

potential results for the use of amaranth and its 

derivatives [80]. 

There are no in vivo studies on the compound 

mentioned; however, a study on the effect of dietary 

amaranth and its potential modulatory role in immune 

activation in collagen-induced arthritis has been reported 

using a murine model of rheumatoid arthritis. A widely 

used model, the CIA model, shows that amaranth has a 

protective immunomodulatory role (Fig 3) in the Th1/Th2 

response by balancing it and also has a role in the 

Th17/Treg balance, so that amaranth could positively 

regulate the immune response in RA conditions [81].  

 

Osteosarcoma: Osteosarcoma is related to immune and 

inflammatory signaling, some studies have shown that 

inflammatory signaling plays an important role in 

osteosarcoma   formation, migration and invasion, and 

vice versa cytokine production in tumors influences 

inflammation [82-83]. Amaranth peptides have been 

studied as potential inhibitors of cell proliferation (Fig 3), 

with emphasis on lectin polypeptides, which could be 

responsible for this action [84]. However, not only grain 

extracts or peptides have been studied, but also 

amaranth leaves from some species, showing potential 

anticancer activity [85]. 

 

Osteoporosis: Today, the activity and effect of amaranth 

on bone processes and on bone diseases, such as 

osteoporosis, is still quite unknown. Although the scarcity 

of information has not limited researchers, and it has 

been reported that amaranth is able to suppress RANKL-

mediated osteoclast differentiation (Fig 3) and the 

expression of specific osteoclast genes in vitro as well as 

the protection against ovariectomy-induced bone 

destruction in vivo. This shows the therapeutic potential 

of amaranth in osteoporosis [86]. 

 

Other diseases where amaranth has been tested for its 

therapeutic potential: Currently, the potential of 

amaranth associated with promoting health has been the 

focus of research, since amaranth components have 

begun to be evaluated in diseases associated with bone 

as well as with other diseases associated with 

inflammation or inflammation itself. In a study on the 

evaluation of the extrusion process in inflammatory 

conditions, it was found that amaranth hydrolysates 

inhibit LPS-induced inflammation in vitro by inhibiting the 

activation of the NF-κB signaling pathway [87]. In 

addition, it has been seen that they show a reduction in 

the expression of interleukins IL-4, IL-6, IL-22 and IL-12 

p70. These interleukins are related to inflammation, 

demonstrating that both grains and leaves have the 

potential to reduce proinflammatory cytokines, and thus 

consider amaranth as having anti-inflammatory potential 
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[88]. In addition to the grain and leaf, the stem has also 

been analyzed, but the results of the studies have shown 

a higher phenolic content in the leaves, as well as greater 

activity and potential as an antioxidant and anti-

inflammatory agent [89]. 

 

 

Figure 3. Summary scheme of the mechanisms of amaranth in bone diseases. 

 

Table 1. Signaling pathways and molecular factors involved in curcumin mechanism of action 
 

Disease Cell Line and/or 

Murine Model 

Signaling pathways 

involved 

Decreasing 

proinflammato

ry cytokines 

Suppressed or decreased, 

metalloproteinases, 

proteins, genes, or 

receptors 

References 

Rheumatoid 

arthritis 

Synovial fibroblasts 

 

Collagen-induced 

arthritis (CIA) 

COX-2 

 

MAPK/ RANK/c-

Fos/NFATC1 

mTOR 

Il-6, IL-8 

 

TNF-α, IL-1β, 

INFγ, IL-17  

 

MMP-1 and MMP-3 

[22-25, 27, 

90] 

Osteosarcoma MG-63 Wnt/β-catenin 

p-JAK2/p-STAT3 

 Smad4, NFκB p65, cyclin 

D3, BCL-2, ERRα 

[32-34, 37-

39, 43],  

Osteoarthritis Mouse model of 

medial meniscus 

destabilization 

(MMD) 

PERK-eIF2α-CHOP 

AMPK/PINK1/Parkin 

Sox9/NF-kB 

TNF-α, IL-1β 

and IL6 

 MM-3, MyD88, p-IκBα, 

NF-κB, PGE2 and NGF 

[48-56] 

Osteoporosis APP/PS1 transgenic 

mice 

NF-κB 

TGF-β/Smad3/3 

ERK 

EZH2/Wnt/β-Catenin 

  

CCL3 

[60-61, 63-

64, 66-67]  

Cancer-derived 

bone 

metastasis 

Prostate cancer 

cells (PC-3) 

MDA-MB-231 cells 

TGF- β signaling  CCL2 

Smad2/3 

[69-71] 
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CONCLUSION 

Considering the issue of inflammation in various diseases, 

including joint and bone diseases, it can be inferred that 

both curcumin and amaranth have anti-inflammatory 

and protective properties. This makes them research 

targets for therapeutic use in relation to inflammation 

involved in bone and joint diseases. In the case of 

amaranth, it is inferred that it could act through the NF-

κB signaling pathway. Additionally, amaranth leaves have 

anti-inflammatory potential, which could be due to the 

phenolic and flavonoid content. However, it is notorious 

that it is necessary to perform more in vitro studies, but 

especially in vivo to further clarify the mechanisms by 

which they act. The present review provides the 

compilation of information on the signaling pathways 

and mechanisms by which both curcumin and amaranth 

act. It is of relevance to address this part because usually 

the research is focused on a study objective, so what is 

developed throughout this paper highlights the 

information and studies. This opens a panorama and 

perspectives for research and studies by the researchers 

of the area to continue with the investigation of the 

mechanisms by which both curcumin and amaranth act 

as the information is still scarce, with emphasis on 

amaranth.  

 

List of Abbreviations: TNF: tumor necrosis factor, IMIDs: 

immune-mediated inflammatory diseases, RA: 

rheumatoid arthritis, DMSO: dimethyl sulfoxide, FBS: 

Fetal Bovine Serum, COX-2: cyclooxygenase 2, IL: 

Interleukin, MMP: metalloproteinase, CIA: collagen-

induced arthritis, VAS: visual analog scale, RF: 

rheumatoid factor, ERRα: receptor Alpha, OA: 

osteoarthritis, MMD: medial meniscus destabilization, 

MIA: monosodium iodoacetate, OP: osteoporosis, 

hADSCs: human adipose-derived mesenchymal stem 

cells. 
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