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ABSTRACT 

Background: Diacylglycerol (DAG) oil is a natural component of various edible oils. DAG has been reported to prevent

obesity through a variety of potential mechanisms in comparison with triacylglycerol (TAG) in humans. An increase in 

postprandial energy expenditure (EE) is proposed to be one of the mechanisms underlying this effect of DAG. Up-

regulated mRNA expressions associated with EE by DAG in the small intestine may explain increased postprandial EE. 

The small intestine seems to contribute to changes in EE by DAG. We previously studied plasma serotonin, which is 

mostly present in the small intestine and mediates sympathetic thermogenesis. We found that DAG ingestion increases 

plasma serotonin levels by approximately 50% compared to TAG ingestion. 

Objective: To understand the molecular mechanisms for DAG-induced increase in serotonin and EE, we investigated

effects of DAG on serotonin release and expressions of genes associated with EE, using the human intestinal cell line. 

Methods: The intestinal cell line, the Caco-2 cells, was incubated with medium containing 1-monoacylglycerol (1-

monooleyglycerol [1-MOG]) and 2-monoacylglycerol (2-monooleylglycerol [2-MOG]), distinctive digestive products of 

DAG and TAG, respectively. We measured serotonin release from the Caco-2 cells using a newly developed high-

performance liquid chromatography. Further, we studied effects of 1-MOG, 2-MOG, and serotonin on expressions of 
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mRNA associated with EE (acyl-CoA oxidase [ACO], medium-chain acyl-CoA dehydrogenase [MCAD], fatty acid 

translocase [FAT], and uncoupling protein-2 [UCP-2]), by the Real-Time quantitative RT-PCR system. 

Results: 100 mM 1-MOG significantly increased serotonin release from the Caco-2 cells compared with the same 

concentration of 2-MOG by approximately 37% (P<0.001). Expressions of mRNA of ACO, FAT, and UCP-2 were 

significantly higher in 100 mM 1-MOG-treated Caco-2 cells than 100 mM 2-MOG-treaed cells by approximately 13%, 

24%, and 35%, respectively. Expressions of mRNA of ACO, MCAD, FAT, and UCP-2 were significantly increased in 400 nM 

serotonin-treated Caco-2 cells as compared with the Caco-2 cells incubated without serotonin by approximately 29%, 

30%, and 39%, respectively. 

Conclusion: Our study demonstrated that a hydrolytic product of DAG increases serotonin release from the intestinal 

cells and enhances expressions of genes associated with b-oxidation (ACO, MCAD), thermogenesis (UCP-2) and fatty 

acids metabolism (FAT). Furthermore, this study revealed that serotonin also enhances expression of these genes, 

proposing a new molecular biological mechanism for DAG-mediated anti-obesity effect. Serotonin may play an important 

role in DAG-mediated prevention of obesity. 

Keywords: Fabaceae functional food, sustainable food, fermentation, antioxidant activity, osteoporosis prevention, 

obesity prevention, B vitamins, natto, vegetable protein. 

©FFC 2024.  This is an Open Access article distributed under the terms of the Creative 

Commons Attribution 4.0 License (http://creativecommons.org/licenses/by/4.0) 
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INTRODUCTION

Food products made from legumes are valuable sources 

of easily digestible protein, fiber, iron, folic acid, calcium, 

zinc, and B vitamins [1-3]. In the context of the global 

tendency to achieve the Sustainable Development Goals 

and population growth, resource shortages, the 

population's diet will undergo significant changes over 

the coming decades to meet sustainability criteria [4-5]. 

First and foremost, it is essential to reduce our 

consumption of animal products, particularly beef, as its 

production has the most significant negative impact on 

the environment. Additionally, a high intake of beef is 

linked to various health issues, including cardiovascular 

diseases and cancer, and it contributes to the 

development of antibiotic resistance in pathogenic 

microorganisms [6-8]. Legume-based products as well as 

other plant-based products may serve as good 

replacement for beef and as basis for a sustainable diet 

[8-10]. Alongside the pressing issues of population 

growth, urbanization, and the reduction of agricultural 

land, the trend of overconsumption of calories among 

the population—an issue that inevitably leads to 

obesity—is becoming increasingly critical [11-12]. At the 

same time, the problem of protein deficiency, micro and 

macroelements, which provoke several socially 

significant diseases, such as diabetes, osteoporosis, 

cancer and obesity, becomes obvious, which leads to 

economic losses and reduced working capacity of the 

population [13-17]. 

Considering the problems described above, it 

becomes obvious that there is a need for the 

development of biotechnologies and the production of 

food products based on plant raw materials, 

including legumes, satisfying requirements for 

affordability for the population, organoleptic 

indicators, as well as the content of important 

components, such as protein, fiber, vitamins, phenolic 

substances, antioxidants, etc.  A variety of legumes, 

which have differing levels of these nutrients, can 

serve as compensatory or functional foods to address 

deficiencies in specific nutrients. Fermentation 

of legumes makes it possible to operate with 

qualitative or quantitative indicators of certain 

nutrients, allowing the use of fermentation as a tool for 

correcting indicators to the required 

parameters, including the elimination of antinutrient 

factors [18-20]. For example, the traditional Japanese 

dish natto, made from soybeans fermented with 

Bacillus subtilis, acquires new functional 

characteristics compared to non-fermented 

soybeans, such as probiotics, the nattokinase enzyme, 

and vitamin K2 content. 

This product has proven effectiveness as 

a preventive type of nutrition for diabetes, 

obesity, osteoporosis, thrombosis, protein and B 

vitamins deficiency []. 

The content of antioxidants and 

phenolic compounds is an important indicator for 

preventive nutrition products, prevention of cancer, 

in particular prostate, ovarian, cervical and breast 

cancer, as well as Alzheimer’s and Parkinson’s [31-39].  

Table 1 provides an overview of some legumes 

used in the food industry, where their huge role in the 

human diet and great potential for the creation of new 

products is clear. These crops will be studied in this 

work.
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Table 1. Legumes studied in this work [40-44]

Name/Systemat

ized name 

(Latin) 

Photo of the 

studied samples 

Cultivation area Biological, agronomic and physico-chemical 

features 

Use in food technology 

Soybeans / 

Glycine max 

Cultivated in more than 60 

countries on all continents 

except Antarctica. 

The leaders in growing and 

exporting soybeans are 

Brazil, the USA, Argentina 

and China. 

High protein content 38-42%. 

High content of phospholipids.  

isoflavones. 

Low carbohydrate content 22-35%, very little starch 

1-1.5%.

Antinutritional components (protease inhibitors, 

lectins). 

Producing soy sauce, tofu, natto. 

Bread industry. 

Production of sausages. 

Canning industry. 

Chickpeas / 

Cicer arietinum 

More than 90% of the 

harvest comes from South 

and Western Asia. 

The leaders in chickpea 

cultivation are India, 

Australia, Türkiye, and 

Pakistan. 

A source of zinc and folic acid, the essential amino 

acid lysine, vitamins B1 and B6. 

Contains about 20-30% protein, 50-60% 

carbohydrates, up to 7% fat (mostly 

polyunsaturated). 

The basis for preparing traditional 

Middle Eastern dishes - hummus and 

falafel. 

Canning industry. 

Mung beans/ 

Vigna radiata 

Mainly grown in East, 

Southeast and South Asia. 

Leaders in cultivation are 

India, Pakistan, China. 

Contains about 55-65% carbohydrates, rich in 

protein 20-30%, vitamins and minerals. Mung bean is 

considered the main source of dietary proteins. The 

proteolytic breakdown of these proteins is even 

higher during germination. 

It is used in Asian and Indian cuisine 

in whole, shelled and sprouted form, 

as well as to obtain starch, from 

which so-called glass noodles are 

prepared. 

Beans/ 

Phaséolus 

vulgáris 

The top five producers are 

India, Brazil, Myanmar, China 

and the USA. 

Bean contains proteins (in some varieties up to 31%), 

50-60% carbohydrates (mono- and oligosaccharides, 

starch), up to 3.6% fatty oil, carotene, potassium, 

phosphorus, a significant amount of copper and zinc, 

nitrogenous substances (including essential amino 

acids), flavonoids (quercituron), sterols (β- and γ-

sitosterols, stigmasterol) and organic acids (malic, 

malonic, citric). Contains vitamins: pyridoxine, 

thiamine, pantothenic and ascorbic acids. 

Used in Mexican, Indian, Creole 

cuisine. 

Soups, side dishes, and canned food 

are made from beans. 

Raw beans, especially red beans, 

contain significant amounts of 

lectins, which have toxic effects. To 

neutralize them, long-term (30 

minutes) boiling in water is used. 

Green lentils/ 

Lens culinaris 

The largest areas of lentil 

cultivation are in Canada, 

India, Australia and Turkey. 

Contains dietary fiber, up to 25% protein. Increased 

content of microelements - potassium, iron and 

phosphorus. 

Lentils are used to make soups, side 

dishes (often mixed with grains, such 

as rice), bread, and added to 

crackers and cookies. 

Red lentils/ 

Lens culinaris 

It is especially widely 

cultivated in India. 

Of the fat-soluble vitamins, red lentils contain 

vitamin A and beta-carotene. Among the water-

soluble ones are vitamins C, B1, B2, B3 (PP), B5, B6 

and B9. 

Red lentils are rich in copper, manganese and iron. 

Red lentils have a sweeter taste, and 

a softer texture compared to green 

lentils. 

Porridges, side dishes, soups, stews 

are prepared from red lentils. You 

can use it to make lean cutlets and 

pancakes, healthy salads and 

vegetarian pate. 

Black lentils/ 

Lens culinaris 

Black lentils were developed 

in Canada. The variety 

quickly spread to the USA, 

India and Asian countries. 

Contains up to 35% protein; up to 53% 

carbohydrates, including complex ones; about 2% 

fat, vitamins A, C, group B - especially a lot of folic 

acid; minerals - potassium, phosphorus, iron, zinc, 

magnesium, calcium, etc. 

The black color of lentils is due to their high content 

of pigment with antioxidant properties. 

Catering enterprises and food 

industry. Soups, vegetable stews, 

side dishes, salads, sauces, sweet 

dishes. 
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Fermentation of legumes makes it possible to 

operate with qualitative or quantitative indicators of 

certain nutrients, allowing the use of fermentation as a 

tool for correcting indicators to the required parameters, 

including the elimination of antinutrient factors [18-20]. 

For example, the traditional Japanese dish natt, made from 

soybeans fermented with Bacillus subtilis, acquires new

functional characteristics compared to non-fermented 

soybeans, such as probiotics, the nattokinase enzyme, and 

vitamin K2 content. 

This product has proven effectiveness as a 

preventive type of nutrition for diabetes, obesity, 

osteoporosis, thrombosis, protein and B vitamins 

deficiency [21-30]. 

The content of antioxidants and phenolic 

compounds is an important indicator for preventive 

nutrition products, prevention of cancer, in particular 

prostate, ovarian, cervical and breast cancer, as well as 

Alzheimer’s and Parkinson’s [31-39].  

Table 1 provides an overview of some legumes used 

in the food industry, where their huge role in the human 

diet and great potential for the creation of new products 

is clear. These crops will be studied in this work. 

The purpose of this study is to obtain data on changes in 

the concentration of phenolic compounds and their 

relationship with the antioxidant status of legume foods 

during their fermentation with the probiotic 

microorganism Bacillus subtilis. Of particular interest is 

the evidence base for the antioxidant activity of Bacillus 

subtilis metabolites during the fermentation of legume 

raw materials. 

 The data obtained will allow us to assess the 

potential of these food products as a source of 

compounds beneficial to human health and will also be 

useful for building predictive models for the storage of 

these products. 

MATERIALS AND RESEARCH METHODS 

The following types of legumes were used as samples 

for fermentation: 

• Soybean “Altaiskaya”, harvest 2023.

Country of origin: Russia. Proteins - 36.7 g,

fats - 17.8 g, carbohydrates - 17.3 g. Energy

value 364 kcal. Round grains with a

diameter of about 5-6 mm, coloring from

light yellow to light brown with dark

inclusions.

• Сhickpeas - harvest 2023. Country of origin:

Uzbekistan. Proteins - 20.1 g, fats - 4.3 g,

carbohydrates - 46.2 g. Energy value 309

kcal.

• Round grains with a diameter of about 6-8

mm, coloring from light yellow to light

brown with dark inclusions.

• Mung bean - harvest 2023. Country of origin

Uzbekistan. Proteins - 23.5 g, fats - 2.0 g,

carbohydrates - 46 g. Energy value 300 Kcal.

• Rounded grains, about 3-4 mm in diameter,

dark green in color with rare dark brown

inclusions.

• Red beans, variety “Rubin”, harvest 2023.

Country of origin: Russia. Proteins - 21.5 g,

fats - 1.6 g, carbohydrates - 52.7 g. Energy

value 310 Kcal.

• Large green lentils “Canadskaya” produced

by “Mistral”, harvest 2023.  Country of

origin: Russia. Proteins - 19.4 g, fats - 1.1 g,

carbohydrates - 59.1 g. Energy value -339

Kcal. Fiber 7.5g. Technical specifications -

01.11.74-036-99621687-2022.

• Red lentils, produced by “Agro-Alliance”,

harvest 2023. Country of origin: Russia.

Proteins - 26.0 g, fats - 2.0 g, carbohydrates-

57 g. Energy value 350 Kcal.  Technical

specifications -01.11.74-006-87345472-
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2019. 

• Rounded grains, flattened in one plane,

about 3-4 mm in diameter and about 2 mm

thick, orange in color with rare dark brown

inclusions.

• Black lentil variety “Beluga”, producer

“Sampo”, harvest 2023. Country of origin:

Russia. Proteins - 35.0g, fats - 2.0g,

carbohydrates - 53.0g. Energy value - 325

Kcal. STO 21318887-009-2013

Rounded grains flattened in one plane, about 

2-4 mm in diameter and about 2 mm thick, color from

dark brown to black. Bacillus subtilis is a species of

gram-positive spore-forming facultative aerobic soil 

bacteria, which, due to its ability to acidify the 

environment and produce antibiotics, is an 

antagonist of pathogenic and opportunistic 

microorganisms such as salmonella, proteus, 

staphylococci, streptococci, yeast fungi; produce 

enzymes that remove putrefactive tissue decay 

products; synthesize amino acids, vitamins, and 

immune-active factors. Some strains of Bacillus 

subtilis are producers of hyaluronic acid. A 

commercially available powder based on the spores 

of this culture, Bacillus subtilis natto, and starch, was 

used as a starter for the fermentation of legumes. The 

starter is produced in 1 gram portion packets and is 

designed for 200 g of prepared beans. The country 

of origin of the starter is China.  

METHODS 

Determination of humidity, moisture content: The

essence of the method is to dry a portion of samples at 

high temperatures and calculate the mass loss as a result 

of drying.

Two portions of samples weighing 10 g each are 

weighed with an error of no more than 0.001 g into 

previously prepared weighing bottles. Open bottles with 

samples and lids are placed in a drying cabinet heated to 

(103 ± 2) °C. The samples are dried for 6 hours, then the 

bottles are closed with lids, cooled in a desiccator, and 

weighed. After weighing, the samples are dried again at 

the same temperature for 1 hour to constant weight. 

The mass fraction of moisture (X) as a percentage is 

calculated using formula 1: 

𝑋 =
𝑚1 −𝑚2

𝑚
⋅ 100(1) 

Where m – sample mass before drying, gr; 

m1 – mass of weighing bottle with the samples 

before drying, gr; 

m2 – mass of weighing bottle with the samples after 

drying, gr; 

The arithmetic mean of the results is taken as the result 

of the analysis two parallel definitions, the discrepancy 

between which does not exceed 0.2%. The result is 

calculated to the first decimal place. 

Determination of the total phenolic compounds content 

by the spectrophotometric method (with the Folin-

Ciocalteu reagent): To determine the total content of

phenolic compounds, a spectrophotometric method was 

used, where the light absorption of complexes of 

phenolic compounds with the Folin-Ciocalteu reagent 

was measured as an analytical signal. Optical density 

measurements were carried out on a SPECTRO star Nano 

BMG LABTECH spectrophotometer (Germany) at a 

wavelength of 765 nm (maximum absorption).

Gallic acid was used as a standard sample solution 

for the determination of phenolic compounds. To 

construct a calibration curve, a series of 6 solutions of 

different concentrations was prepared. 
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To carry out the analysis, 1 ml of the extract was 

transferred into a 25 ml flask, a fivefold solution of the 

Folin-Ciocalteu reagent (1:10) was added and after 5 

minutes the same volume of a 7% carbonate solution was 

added and mixed thoroughly. The volume was brought to 

the mark with the extractant and placed in a dark, cool 

place for 2 hours for complex formation, after which the 

optical density of the blue-violet solution was measured 

at 765 nm. 

Determination of the concentration of substances with 

antioxidant properties SCA total content of antioxidants 

Permanganatometric titration method: Antioxidant

activity (AOA) was determined by permanganometric 

titration. The method is based on determining the 

volume of a titrant solution (in this case, an extract) 

containing antioxidant substances, which will be spent on 

decolorization of a 0.05 N solution of potassium 

permanganate in 0.24 molar sulfuric acid. To 

quantitatively characterize the value of antioxidant 

activity, the value B is introduced, which is the content of 

the amount of biologically active substances of a 

reducing nature in terms of quercetin in 1 ml or 1 g of the 

drug (object). The higher the value of B, the higher the 

AOA the object has. 

To calculate the value of B, formula 2 is used: 

𝐵 = 𝐶𝑘⋅𝑉𝑘⋅𝑉𝑜
𝑉𝑥⋅𝑚

 (2) 

where B is the concentration of biologically active 

substances of a reducing nature of the test object, 

consumed for titration of 1 ml of 0.05 N solution of 

potassium permanganate, mg/g; 

Сk is the concentration of quercetin in the solution 

used for titration of 1 ml of 0.05 N solution of 

potassium permanganate, mg/ml;  

Vk is the volume of quercetin solution consumed for 

titration of 1 ml of 0.05 N solution of potassium 

permanganate, ml;  

V is the volume of the test solution, ml;  

Vx is the volume of solution of the test object 

consumed for titration of 1 ml of 0.05 N solution 

of potassium permanganate, ml;  

m is the mass of the sample of the object under 

study, g. 

Spectrophotometric method with DPPH radicals: The so-

called DPPH method is based on the ability of 

antioxidants to interact with the chromogenic radical 2,2-

diphenyl-1-picrylhydrazyl (DPPH).

To carry out the procedure, a solution of a standard 

DPPH sample in methanol (c = 0.01 mmol/l) was 

prepared; the optical density was measured on a 

SPECTROstar Nano BMG LABTECH spectrophotometer 

(Germany) at a wavelength of 517 nm. 

To determine the antioxidant activity, 0.1 ml of the 

test sample was added to 3.9 ml of DPPH, the samples 

were left for 15 minutes in a dark place, after which the 

optical density was measured.  

The degree of free radical inhibition (X) as a 

percentage was calculated using formula 3: 

𝑋 =
𝐴0−𝐴𝑥

𝐴0
∙ 100  (3)

Where: 

Ao - is the optical density of the original DPPH 

solution; 

Ax - is the optical density of the analyzed solution (a 

mixture of DPPH and the test sample). 

The sequence of work when obtaining fermented 

products is shown in Table 2 

about:blank


FFHD Page 758 of 765 Functional Foods in Health and Disease 2024; 14(11): 751-765

Table 2. Sequence of technological operations and measurement methods used.

Sequence of 
operation 

Operation name Technological characteristics and operation parameters 

1 Reception, sorting and weighing of raw 
materials: 
- soy 
- chickpeas
- mung bean
- beans 
- green lentils
- red lentils
- black lentils

Selection of substandard raw materials based on visual signs. 
Weighing the initial mass of samples on a BK-1500 scale (accuracy ±0.02 
grams) in an amount of 500 grams ± 1 gram 

2 Definition of initial indicators: 
humidity 
 phenolic compounds content 

The method is described above p. 2.1 
The method is described above p.2.2 
The method is described above p.2.3 
The method is described above p.2.4 

3 Soaking raw materials Duration 24 hours 
the temperature throughout the entire process was maintained at 14 ± 2 °C 
to prevent spontaneous fermentation in the SM 5/100-80 TSO thermostat 
(temperature maintenance accuracy ± 2C) 

4 Determination of indicators of soaked raw 
materials: 
humidity 
concentration of phenolic compounds 
antioxidant concentration 
reduction factor 

The method is described above p. 2.1 
The method is described above p.2.2 

The method is described above p.2.3 
The method is described above p.2.4 

5 Boiling of raw materials Heating the boiled biomass until boiling. Boil for 60 minutes with regular 
stirring (once every 5 minutes). Cooker RDE-1620 

6 Cooling and removal of released free 
moisture 

The temperature of the raw material after cooling is 25 ± 1C. Fixed with an 
LTA-M thermometer (accuracy ± 0.2 C). 
Cooling duration is 90-120 minutes. 
Excess moisture is removed by overflow. 

7 Determination of indicators of heat-treated 
raw materials: 
humidity 
concentration of phenolic compounds 
antioxidant concentration 
DPPH scavenging activity of legume products 

The method is described above p. 2.1 
The method is described above p.2.2 

The method is described above p.2.3 
The method is described above p.2.4 

8 Inoculation with microorganisms Bacillus 
subtilis 

Addition of the microorganism Bacillus subtilis in the amount of 0.5 grams of 
pure culture for every 100 grams of prepared raw materials. 
Weighing was carried out on a VK-300 scale (accuracy ±0.001 grams). 

9 Fermentation 24 hours Fermentation of raw materials for 24 hours at a temperature of 30C in a 
thermostat SM 5/100-80 TSO (temperature maintenance accuracy ± 2C) 

10 Determination of indicators of heat-treated 
raw materials: 
humidity 
concentration of phenolic compounds 
antioxidant concentration 
DPPH scavenging activity of legume products 

The method is described above p. 2.1 
The method is described above p.2.2 
The method is described above p.2.3 
The method is described above p.2.4 

11 Fermentation 24 hours (total 48 hours) Fermentation of raw materials for 24 (total 48) hours at a temperature of 
30C in a SM 5/100-80 TC thermostat (temperature maintenance accuracy ± 
2C) 

12 Determination of indicators of heat-treated 
raw materials: 
humidity 
concentration of phenolic compounds 
antioxidant concentration 
DPPH scavenging activity of legume products 

The method is described above p. 2.1 
The method is described above p.2.2 
The method is described above p.2.3 
The method is described above p.2.4 
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A B C 

Picture 1. Changes in the structure of a fermented product during fermentation using soybean as an example. A - soybean

before water-thermal treatment, B - soybean after water-thermal treatment, C - soybean after fermentation. 

In Picture 1 it is possible to observe a visual change in the 

structure of the product during the preparation of a 

fermented product using soybean as an example. 

RESULTS AND DISCUSSION 

As a result of water-thermal treatment of the product 

throughout the entire technological process (soaking, 

cooking, cooling, fermentation for 24 and 48 hours), it 

was found that changes in moisture content are non-

linear and, apparently, are significantly related to the 

individual structure of legumes (Table 3). At the same 

time, some patterns seem important. For example, the 

slight decrease in humidity during the second stage of 

fermentation (from 24 to 48 hours) in percentage terms 

was very similar and amounted to 5%. 

The humidity indicator is important in the industrial 

processing of raw materials, since it fundamentally 

determines the mass of the finished product, and, 

consequently, its commercial cost. In addition, 

knowledge of the patterns of changes in product 

moisture will allow you to accurately predict the 

characteristics of equipment for industrial production. 

More precise rheological characteristics of the raw 

material remain to be established in future studies. 

Table 3. Changes in the humidity of raw materials, semi-finished products and ready products.

Raw materials Initial 
humidity, % 

Humidity after 
soaking, % 

Humidity after 
boiling and 
cooling, % 

 Humidity after 
fermentation 
24 hours, % 

Humidity after 
fermentation 48 hours, % 

Soybeans 12,1±0,2 35,2±0,7 47,5±1,0 46,2±0,9 43,9±0,9 

Chickpeas 10,5±0,2 46,0±0,9 52,5±1,1 51,9±1,0 49,3±1,0 

Mung beans 11,3±0,2 35,7±0,7 50,4±1,0 50,1±1,0 47,1±0,9 

Beans 11,9±0,2 35,5±0,7 48,3±1,0 47,5±1,0 45,1±0,9 

Green lentils 10,5±0,2 38,1±0,8 49,8±1,0 49,2±1,0 46,3±0,9 

Red lentils 11,5±0,2 36,2±0,7 48,6±1,0 48,2±1,0 45,3±0,9 

Black lentils 10,2±0,2 36,5±0,7 45,2±0,9 44,4±0,9 42,2±0,8 
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The concentration of phenolic compounds 

undergoes significant changes during the process of 

biological transformation (Table 4). The authors attribute 

this to the partial loss of this component during 

hydrothermal treatment. These losses can be estimated 

at 38-42%. 

No significant changes in this indicator were 

observed during fermentation for all samples. On 

average, the decrease in the concentration of phenolic 

compounds under the action of Bacillus subtilis was 0.2-

0.5%. 

These data allow us to draw a conclusion about the 

dynamic antioxidant potential of the system in the 

technological process of producing fermented products 

from legumes and select raw materials depending on the 

desired antioxidant status. 

Table 4. Content of phenolic compounds in legumes at various stages

Raw materials Content of phenolic compounds, mg/100 g 

Feedstock Raw materials 
after soaking 

Raw materials 
after boiling 

Product after 
fermentation 
24 hours 

Product after 
fermentation 48 hours, % 

Soybeans 2239,1±22,4 1956,5±19,6 1410,8±14,1 1401,4±14,0 1395±14,0 

Chickpeas 2246,3±22,5 1773,9±17,7 1350,9±13,5 1329,9±13,3 1320,4±13,2 

Mung beans 3332,3±33,3 2715,9±27,2 1992,7±19,9 1990,5±19,9 1990,1±19,9 

Beans 3644,9±36,4 2813,0±28,1 2186,1±21,9 2162,1±21,6 2155,2±21,6 

Green lentils 2384,0±23,8 1985,5±19,9 1455,1±14,6 1420,1±14,2 1415,7±14,2 

Red lentils 2601,4±26,0 2272,4±22,7 1568,0±15,7 1551,0±15,5 1442,0±14,4 

Black lentils 2724,6±27,2 2285,5±22,9 1635,5±16,4 1611,5±16,1 1602,5±16,0 

It is reliably known that phenolic compounds make 

a significant contribution to the total antioxidant status 

of products [45]. It is also known that metabolites of 

microorganisms produce substances of antioxidant 

nature [46]. A study of the antioxidant properties of 

fermented legumes showed results confirming these 

properties of living systems (Table 5). 

It is important to note the significant accumulation 

of antioxidant substances because of bacterial activity. 

This increase by 20 - 30% offsets the loss of the 

antioxidant properties of the product at the soaking and 

cooking stage, which is significant. 

It is also noted that the behavior of antioxidant 

status at individual stages of fermentation has its own 

patterns. 

We attribute this to the fact that in fermented 

legumes, accumulation is associated with the chemical 

composition of the feedstock, which is predisposed to 

fermentation of legumes to a greater or lesser extent. In 

the legumes observed in this study, it can be said that 
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may be associated with the accumulation of such 

metabolites in the first day of fermentation. 

In general, the antioxidant status in products from 

fermented legumes and their fermentation products 

can be assessed as quite high. For example, in fruit 

juices known for their antioxidant properties [47], this 

indicator is: blueberry juice 291 mg/100 g, apple juice 

57 mg/100 g, kiwi juice 45 mg/100 g. In vegetable 

juices: tomato juice 64 mg/100 g, carrot juice 19 

mg/100 g. [48]  

Functional Foods in Health and Disease 2024; 14(11): 751-765

phenolic compounds rather contribute to the 

fermentation process, i.e. are a development stimulator 

for the bacteria Bacillus subtillis.

For example, fermented mung beans, beans and 

black lentils have the highest concentration of 

antioxidants, while their content of phenolic compounds 

is also the highest. 

We also note that in the period from 24 to 48 hours 

of fermentation, there is a stabilization of the 

concentration of substances of antioxidant nature, which 

Table 5. Content of antioxidants at various stages of production

Raw materials Content of antioxidant compounds, mg/100 g 

Feedstock Raw materials 
after soaking 

Raw materials 
after boiling 

Product after 
fermentation 24 hours 

Product after 
fermentation 48 hours, % 

Soybeans 65,48±3,25 55,21±2,61 45,09±2,26 48,21±2,46 49,91±2,45 

Chickpeas 67,63±3,38 56,15±2,81 47,04±2,35 50,75±2,59 52,98±2,65 

Mung beans 82,58±4,13 71,56±3,58 57,58±2,88 62,58±3,18 64,37±3,22 

Beans 88,76±4,44 73,84±3,69 62,78±3,14 65,51±3,32 67,29±3,37 

Green lentils 62,73±3,14 54,62±2,73 45,63±2,28 47,70±2,44 49,26±2,47 

Red lentils 65,63±3,28 57,94±2,90 47,31±2,37 49,21±2,51 51,09±2,56 

Black lentils 77,26±3,87 67,32±3,37 55,84±2,79 60,37±3,10 61,64±3,12 

The activity of the antioxidant complex of compounds in 

the Fabaceae - Bacillus subtillis system was also

determined using the DPPH method, which evaluates the 

total contribution of all components to the overall status 

of the system. The results presented in Picture 2 correlate 

well with the data in Table 5. An important observation 

can be considered: 

• decrease in antioxidant status after soaking and

washing legumes by 28-33% of the original,

• an increase of 20-30% from the minimum value

after hydrothermal treatment of the system.

Probably due to the accumulation of active 

metabolites of Bacillus subtillis [49-50]. 

• the total decrease in antioxidant activity in the

finished product, compared to the original raw

material, can be characterized as 20-25%, which

can be considered acceptable, especially since the

original raw material is not traditionally used in its

native form.

• Increase in antioxidant activity during 

fermentation.
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   Picture 2. Kinetics of changes in antioxidant activity when obtaining a fermented product from legumes.

CONCLUSION 

During the production of legumes fermented by Bacillus 

subtilis, profound physical and biochemical

transformations occur, which have a significant impact 

on the antioxidant potential of the product. 

The humidity of the product determines the change 

in the amount of antioxidant substances due to losses 

with water during soaking and boiling. 

During fermentation, on the contrary, the 

antioxidant status of the product increases. 

It's important to note that, in addition to their 

health benefits, antioxidants play a crucial role in the 

storage of finished products by extending shelf life and 

preventing undesirable oxidative processes. The 

relationship between antioxidant potential and storage 

quality of fermented soy products remains to be 

established. 

List of Abbreviations: STO: standard of organization;

DPPH: chromogenic radical 2,2-diphenyl-1-

picrylhydrazyl. 
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