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ABSTRACT  

Background: There are numerous botanical extracts and fractions that have been shown to have a diverse range of 

bioactivities. Many nutraceutical products and food supplements contain phytochemicals - often multiple numbers of 

them as constituents of a single product. There is a paucity of data on the net bioactivities of these multi-component 

products. This paper reports the effects of four such products on the expression of six genes critical to maintaining good 

health. 

 

Objectives: We investigated several products that contain a number of constituents derived from plant species as well 

as essential minerals on the biochemical activities of liver cells in culture. The combination of these bioactives into one 

product results in multiple strong biological effects. Examples of these are presented in this paper with a discussion of 

how the constituents have provided this effect. 

  

Methods: The expression of six genes (ppar-α, glp-1, bdnf, sirt-1, nrf1, sod-1) in a human liver cell line (THLE-2 cells) were 

cultured for 24 hours in the presence of Vitalité, Reviv, Revíve and Collagène (products from THREE International). The 

RNA was isolated from these cells and from the control unsupplemented cells. The levels of transcripts of these genes in 

these isolates were measured by RT-PCR. The changes in the concentrations of the mRNA from the supplemented cells 

were compared with those from reference cells. 

 

Results: Of the four products, Revíve boosted the transcription of the glp-1, the bdnf, the sirt-1, the nrf1, and the sod-1 

genes. Éternel boosted the transcription of ppar-α, and the sod-1 genes. Vitalité increased the transcription of the glp-

1, the bdnf, the nrf1, and the sod-1 genes. Collagène stimulated the expression of the bdnf, and the sod-1 genes. 

https://doi.org/10.31989/ffhd.v15i1.1524
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Nutraceutical products, either as a complement or as a substitute for pharmaceuticals, have been receiving increased 

attention for maintaining good health. These products are multi-component. Evidence for their clinical efficacy is 

frequently lacking.  

 

Conclusion: The results of this project provide evidence that the phytochemicals in the four products investigated can 

provide the bio-effects that regulate the expression of key genes that control fundamental essential metabolic activities 

and so can justify the claims made for them. 
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Graphical Abstract: Epigenetic effects of four nutraceutical products on human liver cells 
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INTRODUCTION 

As well as being important for sustaining an active 

lifestyle, appropriate nutrition is essential for 

maintaining good health. For many, the food component 

of an individual’s nutrition is sub-optimal, either because 

of insufficiency or deficiencies in its composition. To 

counter this, one remedy is to consume nutritional 

supplements that address the shortages. 

Nutritional supplements can be derived from 

various sources and can be either synthetically produced 

or obtained from natural materials [1-3]. The 

supplements from natural origins can be from marine 

organisms, animals, plants, or microbial species. The 

European Food Safety Authority [2] defines these 

supplements as concentrated sources of nutrients or  

other substances with nutritional or physiological effects. 

They are intended to correct nutritional deficiencies, 

maintain an adequate intake of certain nutrients, or 

support physiological functions [1]. 

Different plants are sources of diverse supplements 

because of their distinctive compositions. Additionally, 

the methods of preparation of the extracts or fractions 

from a particular plant can yield products of different 

compositions and structures and consequently manifest 

different biological effects. In order to achieve 

biomedical effects, specific extracts from botanical 

species are evaluated so as to establish their efficacies, 

modes of action, and safety [4]. Additionally, 

combinations of extracts and fractions can achieve 

increased effectiveness as well as offer opportunities for 

eliciting more than one health benefit. 

As an example, curcumin is a compound that is 

extracted from turmeric (Curcumina longa). Multiple 

bioactivities have been reported with its anti-

inflammatory and pain relief effects being well-

characterized [5-6]. It is also proposed to have effects on 

gastrointestinal tract pathologies, colorectal cancer, 

diabetes, depression, and viral infections [6-9]. A 
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hindrance to the wide acceptance of the benefits of 

curcumin is its poor bioavailability [10-11]. A relatively 

small amount of piperine from the black pepper (Piper 

nigrum) plant has been shown to improve the uptake of 

curcumin [10,12].  

The liver is an essential organ for all mammals, 

which is responsible for multiple crucial functions. There 

are six key functions that are ascribed to it: 
 

1. Metabolism. 

2. Detoxification. 

3. Filtration. 

4. Digestion. 

5. Protein synthesis. 

6. Storage of minerals and vitamins. 
 

The primary metabolism of the major food classes (fats, 

proteins, and carbohydrates) occurs in the liver [13-15]. 

It is also the primary organ for the activation and 

metabolism of drugs and xenobiotics and is responsible 

for the deactivation of substances and compounds that 

are harmful. The liver has an array of enzymes that can 

detoxify these unwanted compounds, which are then 

excreted [16,17]. It converts ammonia to urea which is 

removed in the urine via the kidneys. Additionally, the 

liver filters the blood, detoxifies any toxic and harmful 

substances, and secretes them into the blood or bile. 

Bile is a fluid that is produced by the liver and is 

stored in the gall bladder. When food is consumed, bile is 

transported from the gall bladder to the intestines as it is 

essential for the breakdown and digestion of fats [18]. 

Proteins are essential constituents of organs and 

cells as well as being the enzymes that are critical for all 

biochemical reactions. They are also involved in 

physiological activities such as those conducted by blood 

and are engaged in transport functions [19]. So, the 

synthesis of proteins by the liver is necessary for the 

performance of these multiple actions. 

A healthy liver stores, produces, and releases 

vitamins and minerals [20-21]. These are needed for a 

wide variety of molecular processes. Because of these 

activities, the optimal maintenance of its function is 

important. Consequently, the consumption of 

supplements, especially those comprised of a multiple 

number of botanical extracts, will assist in achieving this. 

 

MATERIALS AND METHODS  

Test samples: The products investigated in this project 

were Vitalité, Éternel, Revíve and Collagène. These were 

provided by THREE International (Utah, USA). 

 

Cell Culture: THLE-2 cells were obtained from American 

Type Culture Collection (ATCC, Bethesda, MD) and 

cultured initially in culture flasks that had been pre-

coated with 0.01 mg/mL fibronectin, 0.03% bovine type I 

collagen and 0.01% bovine serum albumin in bronchial 

epithelial growth medium (BEGM) (Lonza, Wellington, 

New Zealand) plus 10% fetal bovine serum (FBS) 

(Moregate, Hamilton, New Zealand) and 

penicillin/streptomycin (Sigma-Aldrich, St Louis, MO). 

They were incubated at 37°C in a humidified atmosphere 

of 5% CO2 and 95% air. The cells were harvested when 

they reached 80% confluence. 

To detach the adherent cells, the medium was 

removed from the culture flask, and the adherent cells 

were washed with phosphate-buffered saline (PBS) 

(Gibco, Auckland, New Zealand) to remove any traces of 

FBS. Then 4 mL of 0.05% trypsin/EDTA solution (Sigma-

Aldrich) was added and incubated at 37°C for 5 min until 

all the cells detached. The trypsin was then neutralized 

by adding 5-6 mL of pre-warmed Eagle’s Modified 

Essential Medium (EMEM) (ATCC) + 10% FBS and 

antibiotics and centrifuged at 125g (500 rpm) for 7 min at 

4°C. 

The supernatant was discarded, and the cell pellet 

was re-suspended with 10 mL of pre-warmed EMEM + 

10% FBS and antibiotics. The cell number was counted 

and adjusted to 1 x 105 cells/mL for the culturing.  
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For the experiments, flat-bottomed 24-well plates 

treated for cell adhesion were used for the mRNA 

determinations. 96 well plates were used for the cell 

proliferation assays. For each test sample, triplicate cells 

were set up. 

For the mRNA determination assays, 720 µL of the 

cell suspension (1 x 105 cells/ mL) were plated into wells, 

giving approximately 7.2 x 104 cells/well. 720 µL of the 

appropriate medium only was added to other wells. The 

plates were placed in the incubator for 24 hours to allow 

the cells to adhere to the wells. 

The plates were then removed from the incubator. 

80 µL of the test samples (final concentrations 50 µg/ mL 

or 150 µg/ mL) were added to the appropriate wells. 

80 µL of 0.5% dimethyl sulfoxide (DMSO) in culture media 

was added to the control wells. The plates were 

incubated at 37°C in 95% Air/5% CO2 for 24 hours. At the 

time of termination, the culture medium was aspirated 

from the wells. 

Simultaneously a 96-well plate was set up for the 

cell concentration determinations. 180 µL of the cell 

suspension (1 x 105 cells/ mL) were plated into wells 

giving approximately 1.8 x 104 cells/well. 180 µL of the 

medium only was added to other wells. The plates were 

placed in the incubator for 24 hours to allow the cells to 

adhere to the wells. The plates were removed from the 

incubator, and 20 µ µL of the test samples (final 

concentrations 50 µg/ mL or 150 µg/ mL) were added to 

the appropriate wells. 20 µL of 0.5% DMSO in culture 

media was added to the control wells, the plates were 

incubated at 37°C in 95% Air/5% CO2 for 24 hours. At the 

time of termination, the culture medium was aspirated 

from the wells, and the cells were incubated with the 

dimethyl thiazolyl diphenyl tetrazolium (MTT) Reagent 

(Sigma-Aldrich) to determine the cell concentrations.  

 

RNA Isolation and Gene Expression: Using the cells from 

the 24 well plates, RNA isolations were carried out with 

ReliaPrep miRNA Cell & Tissue Miniprep kit (Promega 

Corporation, Madison, WI, USA) according to the 

manufacturer’s protocol. RNA was eluted with RNase-

free water (ThermoFisher, Auckland, New Zealand) and 

quantified using a 260 nm/280 nm ratio with a 

spectrophotometer. 

Reverse transcription reactions were performed 

using 1 µg of RNA with the SuperScript VILO cDNA 

synthesis kit (Invitrogen, Auckland, New Zealand). The 

cDNA was then diluted 10-fold with water 

(ThermoFisher). PCR reactions involved 8 µL diluted 

cDNA, 1 µL gene primer (Fluorescein amidite (FAM) 

labelled) (see Table 1), 1 µL actin-β (hACT) primer (2'-

chloro-7'-phenyl-1,4-dichloro-6-carboxyfluorescein (VIC) 

labelled) and 10 µL TaqMan Fast Advanced Master Mix 

(ThermoFisher). 

Table 1. Source and identification of primers 

Primers  Supplier Catalog no. 

ppar-α Applied Biosystems Hs00231882-m1 

glp-1 Applied Biosystems Hs00913461-g1 

bdnf Applied Biosystems Hs00380947-m1 

sirt-1 Applied Biosystems Hs01009003-m1 

nrf1 Applied Biosystems Hs01031046-m1 

sod-1 Applied Biosystems Hs00916176-m1 

actin-β Applied Biosystems Hs99999903m1 
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Reactions were run on a QuantStudio 3 (ThermoFisher) 

with the following conditions: 50°C 2 min, 95°C 20 sec, 

and then 40 cycles of (95°C 3 sec, 60°C 30 sec). The 

threshold cycle was determined by the instrument 

software. The mRNA level of each gene was measured as 

a CT value and normalized to β-actin as an endogenous 

control. Values are the mean of triplicate determinations. 

 

RESULTS AND DISCUSSION 

We have investigated the effects of four nutraceutical 

products on six key metabolic activities and how the 

constituents of the products may be responsible for 

those effects.  

The products were added to the human liver cells 

(THLE), and the effect on the transcription of the six 

genes was measured. 

 

Ppar-α (peroxisome proliferator-activated receptor-α): 

The effects of three products (Éternel, Vitalité, and 

Collagène) on the transcription of ppar-α are summarized 

in Figure 1 and Table 2. 

 
Figure 1. Effects of test samples on transcription of ppar-α by human liver cells (THLE)

  

Table 2. Effects of test samples on transcription of ppar-α by human liver cells (THLE)  

Test Sample Concentration (µg/mL) mRNA (fold change) 

Éternel 50 3.80 

Vitalité 150 2.16 

Collagène 150 1.17 

This gene is an important regulator of energy 

homeostasis. Under conditions of low metabolic energy, 

it needs to be stimulated. Its elevated expression leads to 

increased catabolism of fatty acids [22-23]. 

The product Éternel contains several constituents 

which are known to stimulate ppar-α production. Most of 

the major constituents of Éternel have been reported to 

have a positive effect on the biosynthesis of ppar-α. 

Glutathione is best known as a free radical scavenger and 

antioxidant and so can influence the ageing process. This 

tripeptide has been reported as a stimulator of ppar-α 

[24]. Three of the fruits in Éternel also have antioxidant 

activities. Two of them, acai [25], and mangosteen [26] 

have been reported as activators of this gene. So, these 

and other fruits present in this product have a positive 

effect on this gene, which results in a stimulation of 

energy production. 

Coenzyme Q10, which is also a component of 

Éternel is an essential constituent of mitochondrial 

energy production. Consequently, if there is a deficit in 

energy production, supplementation with coenzyme Q10 

would be expected to boost the energy. This coenzyme 

can also boost energy metabolism by stimulating ppar-α 

[27]. 

Plant-derived lecithin, which is included in Éternel, 

is known to have a positive effect on ppar-α [28]. This 

nutraceutical contains several constituents that affect 

the expression of this key gene. It is, therefore, quite 

conceivable that the strong effect of this product on the 

biosynthesis of this regulator is either in an additive or 

synergistic manner. 
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By way of contrast, Vitalité is composed of multiple 

constituents including B and D vitamins, a range of 72 

trace minerals, 16 amino acids, enzymes, and probiotics. 

There are also several berries, such as goji, pomegranate, 

amla, and acai, as well as wheatgrass, kale, spirulina, 

alfalfa, and fish oil in it. With the exception of acai [29], 

there is negligible evidence that any of these constituents 

have a significant effect on the transcription of ppar-α As 

this combination of natural products has such a profound 

effect on the gene, it might be assumed that the 

combination of these components may act synergistically 

to produce such an unexpected significant effect. 

Two constituents of Collagène have been shown to 

be stimulators of producing ppar-α. For some time, 

ascorbic acid has been known to be a stimulator of it [30]. 

There are also several reports that pomegranate is an 

activator of the production of it [31-32]. 

In summary, these three nutraceutical products 

substantially stimulate the transcription of this important 

gene that is concerned with increasing energy 

production, especially through the oxidation of fatty 

acids. However, their mechanisms of action would seem 

to be different. Vitalité does not have any components 

that have been reported to activate this gene. 

Consequently, the fact that the product has a positive 

effect would seem to be due to the interaction between 

several of these components.  

In contrast, Éternel, Vitalité, and Collagène have 

several constituents that are known activators of ppar-α. 

So, their effects are likely to result from having multiple 

stimulators in one product. 

 

Glp-1 (glucagon-like peptide-1): This hormone peptide 

promotes cellular insulin production and inhibits 

glucagon release [33-34]. This will result in a decrease in 

blood sugar levels. The control of glp-1 is a current 

approach to the management of weight and other 

aspects of metabolic syndrome [35-37]. It also has 

neurogenic and neuroprotective effects [38]. There is a 

strong emphasis on using prescription pharmaceuticals 

such as Ozempic and Mounjaro. While effective, there 

are side effects such as nausea, diarrhea, and headaches 

that can arise from their use. Natural products and 

nutraceutical formulations that can modulate glp-1 

expression provide an alternative to these drugs. 

Two widely distributed nutraceutical products 

(Vitalité and Revíve) have been investigated with respect 

to their effects on the transcription of glp-1 (Figure 2).  

 

 
Figure 2. Effects of test samples on transcription of glp-1 by human liver cells (THLE). The outcomes are summarized in 

Table 3. 

 

Table 3. Effects of test samples on transcription of glp-1 by human liver cells (THLE) 
 

Test Sample Concentration (µg/mL) mRNA (fold change) 

Vitalité 150 3.48 

Revíve  50 2.93 

The product Vitalité at 150 µg/mL caused a 3.48-fold 

increase in glp-1 transcription in cultured liver cells. Of 

the vitamins in Vitalité, vitamin D has been shown to 

cause an increase in this peptide (39). Among the trace 

elements in this product, selenium is a promoter of this 

key hormone (40-41). 
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The Central South American acai berry (Euterpo 

oleracea) [42] and the Indian gooseberry (amLa) 

(Phyllanthus emblica) [43] are also known to activate glp-

1 production. So, the effect of this product on the 

transcription of glp-1 is not unexpected when the 

bioactivities of several of its constituents are considered. 

Another example of the effectiveness of a 

nutraceutical on glp-1 transcription is Revíve. There was 

a significant increase in the transcription of this gene in 

liver cells. This product also contains acai, and there is a 

seminal report by de Bem Costa on the effect of this fruit 

on glp-1 production [42]. Among the other components 

of this product, ginger (Zingiber officinale) has a positive 

effect on glp-1 [44], and polyphenol resveratrol has a 

similar effect [45-46]. 

It is apparent that, although the constituents of 

Revíve are quite different to those of Vitalité, it has 

compounds and extracts that are capable of being 

responsible for the activating effect on glp-1 expression. 

So, there is well-established evidence for the effects of 

these two products on glp-1. 

 

Bdnf (brain-derived neurotrophic factor): Bdnf is a 

modulator of nerve transmission and is important for 

both learning and memory [47]. It is expressed by several 

organs, such as the central nervous system and gut [48]. 

Additionally, it is key to the control of glucose and energy 

metabolism [49]. For neurodegenerative diseases such as 

Parkinsons disease, Alzheimer’s disease, Huntington’s 

disease, and multiple sclerosis, as well as diabetes, 

maintaining adequate levels of bdnf is important in the 

prevention and management of them. 

Three nutraceutical products currently on the 

market were investigated for their effects on the 

transcription of the bdnf gene in human liver cells (Figure 

3).  

 
Figure 3. Effects of test samples on transcription of bdnf by human liver cells (THLE). The responses are presented in Table 

4. 

 

Table 4. Effects of test samples on transcription of bdnf by human liver cells (THLE).  

Test Sample Concentration (µg/mL) mRNA (fold change) 

Vitalité 150 8.40 

Collagène 150 5.70 

Revíve 50 4.30 

Pomegranate has been demonstrated to stimulate the 

expression of bdnf [50-51]. It is a constituent of both 

Collagène and Vitalité. The former at 150 µg/mL caused 

a strong increase in the transcription of bdnf (5.7-fold 

increase), and the latter at the same concentration 

produced a substantial increase in the gene expression 

(8.4 times). Some vitamins also have a positive effect on 

this gene. Ascorbic acid (vitamin C), a constituent of 

Collagène is a promoter of it [52]. Vitamin D and a 

multiple number of B vitamins have been shown to 

modulate bdnf expression [53-57]. These vitamins are 

active ingredients of the product Vitalité. 

Vitalité also contains several components that have 

been shown to modulate positively the expression of 
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bdnf. These include spirulina [58-59], wheatgrass [60], 

and goji berries [61-62]. 

There are several other extracts and compounds 

derived from botanical sources that increase bdnf 

expression. These include curcumin [63,64], resveratrol 

[65-66], ginger [67-68], acai berries [69] as well as the 

popular shiitake mushrooms [70]. All five of these are 

constituents of Revíve. So, it is not surprising that this 

nutraceutical product at 50 µg/mL stimulated the 

transcription of bdnf by 4.3 times. 

There is an extensive and diverse range of natural 

products that can positively affect the expression of this 

gene. Combining them into individual products results in 

either an additive or possibly a synergistic modulation of 

the bdnf gene, although the mechanisms involved may 

not be identical. 

 

Sirt1 (sirtuin 1): The actual functions of sirt1 are not well 

characterized, but its expression is downregulated in cells 

that show insulin resistance [71-72]. The sirt1 protein has 

deacetylation activity as it removes acetyl groups from 

several key metabolic regulators [73] and the p53 protein 

[74]. The nutraceutical product Revíve was investigated 

for its effect on the transcription of sirt1. The outcome is 

summarized in Figure 4 and Table 5. 

 

 
Figure 4. Effects of test sample on transcription of sirt1 by human liver cells (THLE) 

 

Table 5. Effects of test sample on transcription of sirt1 by human liver cells (THLE) 
 

Test Sample Concentration (µg/mL) mRNA (fold change) 
 

Revíve 
 

50 1.60 

The nutraceutical Revíve at 50 µg/mL elevated the 

transcription of sirt1 by 1.6 times. This product is 

composed of five key ingredients, three of which have 

been shown to increase sirt1 levels.  

These include curcumin [75-76], ginger [77] and 

resveratrol [78,79]. So, the stimulatory effect of Revíve 

on the sirt1 gene expression is supported by the 

established characterized effects of its major ingredients.  
 

Nrf1 (nuclear respiratory factor 1): The protein that is  

the product of the nrf1 gene is a transcription factor that  

is responsible for regulating several metabolic activities.  

It is important for the genes involved in respiration as  

well as DNA transcription by mitochondria [80] and cell 

proliferation [81]. Additionally, it has a role in the growth 

of neurites [82] as well as being a critical factor for many 

biochemical reactions. Two nutraceutical products 

(Revíve and Vitalité) were investigated for their effects on 

the transcription of nrf1 (Figure 5). 

 

 
Figure 5. Effects of test samples on transcription of nrf1 by human liver cells (THLE). The outcomes are summarized in Table 

6. 
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Table 6. Effects of test samples on transcription of nrf1 by human liver cells (THLE) 

Test Sample Concentration (µg/mL) mRNA (fold change) 

Revíve 50 2.29 

Vitalité 150 2.24 

At 50 µg/mL, Revíve also had a significant effect on the 

expression of nrf1. The increase was 2.29 times. Several 

phytochemicals that are ingredients of this product are 

known to affect the production of this factor. These 

include curcumin [83-85], ginger [86], boswellia [87], 

resveratrol [88-89], and grape seed [90-92]. 

Consequently, it is not surprising that a product that 

contains all of these known stimulators can activate the 

gene expression, as recorded here. 

Vitalité at 150 µg/mL produced 2.24 times increase 

in the expression by the nrf1 gene. This product has a 

number of constituents that have been reported to be 

activators of this gene. The trace elements, selenium and 

chromium, which are included in the product, have well-

established positive effects on the nrf1 gene [93-96]. 

Vitamin D, which is important to many biochemical 

activities and is a constituent of Vitalité, is also a 

stimulator of nrf1 [97-98]. Of the botanical components 

of the nutraceutical product, astragalus [99], alfalfa 

[100], goji [101-102], and broccoli [103] have been shown 

to stimulate the expression of nrf1. 

So, with this combination of known effectors of 

nrf1, it is not unexpected that Vitalité has such an effect 

on nrf1 in liver cells. 

 

Sod1 (superoxide dismutase 1): The excessive 

production of reactive oxygen species has multiple 

damaging consequences. Oxidative damage to many 

tissues and organs is a feature of multiple pathologies. 

Inhibition of this damage is beneficial and is the basis of 

a number of therapeutic approaches. One of the natural 

in vivo means of achieving this is the enzyme superoxide 

dismutase. The increase in this enzyme’s action is 

advantageous in the control of the level of reactive 

oxygen, superoxide, and other detrimental oxygen 

radicals [104]. All four test products had positive effects 

on the expression of this gene (Figure 6 and Table 7). 

 
 
Figure 6. Effect of test sample on transcription of sod1 by human liver cells (THLE) 

 

Table 7. Effect of test sample on transcription of sod1 by human liver cells (THLE)  

Test Sample Concentration (µg/mL) mRNA (fold change) 

Revíve 50 1.85 

Vitalité 50 1.38 

Éternel 50 1.23 

Collagène 50 1.22 

 

Acai, which is a constituent of Revíve, has been 

shown to stimulate sod1 transcription [69, 105]. As well 

at least three other constituents have been shown to 

activate this gene. These include resveratrol [106], ginger 

[107-108] and curcumin [109-110]. So, the presence of 

these four natural phytochemicals is likely to be the  
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cause of the effects of Revíve on sod1 gene expression. 

Several of the components of Vitalité are known 

stimulators of sod1. There are publications 

demonstrating that both Vitamin B [111-112] and 

Vitamin D [113-114] activate this enzyme. As it contains 

the essential minerals selenium and chromium, both of 

which are well-known to promote the expression of sod1 

[115-116], these are likely to be significant contributors 

to the effect of Vitalité on this gene’s transcription. 

This product contains a range of botanical extracts, 

some of which have been reported to be activators of 

sod1. These include acai [69,105], kale [117], and 

spirulina [118-119]. So, there is strong data to provide a 

rationale for the promotional effects of this product on 

sod1. 

Goji and acai are constituents of Éternel and are 

contributors to the effects of sod1 in the liver cells. 

Glutathione is also in Éternel, and it is known to activate 

sod1 [120-121]. 

Coenzyme Q10, which is also present in Éternel, has 

multiple bioactivities, including affecting the expression 

and activity of sod1 [122-123]. Other constituents that 

have been demonstrated to have a positive effect on 

sod1 are mangosteen [124] and collagen [125]. 

There are at least six components of Éternel that are 

known activators of sod1, so it is to be expected that the 

combination of them results in an activation of this gene. 

Collagène at 50 µg/mL was able to stimulate the 

sod1 gene by 1.22 fold in cultured liver cells. Collagen, 

which is a major constituent of Collagène, is known to 

influence sod concentrations [126-127]. This product also 

contains another well-characterized structural protein, 

keratin. In 2021 Cheng, Qing et al. reported that keratin 

can increase the activity of sod [128]. Another important 

component of tissue matrices is hyaluronic acid which is 

a stimulator of sod1 [129-130]. 

Two vitamins that are part of this nutraceutical 

product also influence sod1. Vitamin C (ascorbic acid) has 

been shown to stimulate superoxide dismutase [131-

134]. Vitamin H (biotin) has also been reported to 

modulate this dismutase [135]. 

Additionally, pomegranate extract, which has 

antioxidant properties, has been reported to activate 

sod1. So, its inclusion in Collagène adds to the stimulation 

of sod1 production. Collagène, which is composed of 

matrix constituents as well as two vitamins, has a positive 

effect on sod1 transcription. These constituents 

individually all influence this transcription, so the 

activation produced by this product can be explained by 

the properties of its components. 

 

CONCLUSION 

In this investigation, the effects of four nutraceutical 

products on the expression of six important regulatory 

genes involved in key metabolic processes have been 

determined. The expression of these genes and their 

translated products are necessary for the maintenance of 

healthy organs and tissues. Dysfunction of these genes 

can lead to disturbances that translate to ill-health, some 

of which are chronic conditions. Modulation of the 

expression of these crucial genes, especially in a critical 

organ such as the liver, can result in the optimization of 

the biochemical pathways that they control. 

This study has clearly shown that combining 

botanical extracts and phytochemicals that have 

established bioactivities can produce products that have 

potent epigenetic effects on the transcription of genes 

that have essential controlling effects on metabolism. As 

an outcome, these nutraceutical preparations can be 

important alternatives in the prevention and 

amelioration of a number of chronic health conditions. 

Having determined the basis for the epigenetic 

effects of four nutraceutical products using liver cells in 

culture, it is of considerable importance to confirm these 

results with in vivo studies.  As well, epigenetic effects of 

other formulations (including prototypes being 

developed) could be investigated using this approach so 

as to establish scientific evidence for their efficacies. 
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Future studies include the investigation of other 

nutraceutical formulations to regulate the epigenetic 

function of genes critical for human health both in vitro 

and in vivo. 

 

List of Abbreviations: BGEM: Bronchial epithelial growth 

medium; DMSO: dimethyl sulfoxide; EMEM: Eagle’s 

modified essential medium; FAM: Fluorescein amidite; 

FBS: fetal bovine serum; hACT: human actin; MTT: 

dimethyl thiazolyl diphenyl tetrazolium; PBS: phosphate 

buffered saline; VIC: 2'-chloro-7'-phenyl-1,4-dichloro-6-

carboxyfluorescein. 
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