
Functional Foods in Health and Disease 2025; 15(4): 217-228 FFHD Page 217 of 228 

Research Article  Open Access 

Urolithin A represses IgE-induced degranulation in RBL-2H3 cells 

Daiya Hirate1, Miwa Higa1, Yutaka Masuda1, Kimihiko Takada1* 

1Center for Education and Research in Clinical Pharmacy, Showa Pharmaceutical University, Higashi Tamagawa Gakuen, 

Machida, Tokyo 194-8543, Japan. 

*Corresponding author: Kimihiko Takada, MD, Center for Education and Research on Clinical Pharmacy, Showa

Pharmaceutical University, Higashi Tamagawa Gakuen, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan. 

Submission Date: January 27th, 2025, Acceptance Date: April 9th, 2025, Publication Date: April 16th, 2025 

Please cite this article as: Hirate D., Higa M., Masuda Y., Takada K. Urolithin A represses IgE-induced degranulation in RBL-

2H3 cells. Functional Foods in Health and Disease 2025; 15(4): 217 - 228. DOI: https://doi.org/10.31989/ffhd.v15i4.1562 

ABSTRACT 

Background: Urolithins, intestinal metabolites of ellagic acid, have various physiological properties including anti-

inflammatory effects. In addition, the anti-allergic effect of urolithin ingestion in a mouse model of pollinosis has been 

reported. However, the effect of urolithins on mast cell degranulation has not been reported. To investigate the anti-

allergic effect of urolithin A (UA), we examined whether UA suppressed the degranulation reaction in a rat mast 

cell/basophil cell line, RBL-2H3. Furthermore, we examined the effect of UA on the activation of the signal pathway 

involved in the degranulation reaction. 

Methods: We measured antigen-induced β-hexosaminidase and histamine release from RBL-2H3 cells to study the ability 

of UA to inhibit degranulation activity. Furthermore, we performed western blotting to determine whether Akt 

phosphorylation, which is involved in the signal transduction pathway leading to antigen-antibody-induced 

degranulation, was inhibited. 

Results: UA suppressed β-hexosaminidase activity up to 10 μM in a concentration-dependent manner—2 and 5 μM UA 

suppressed activity by 46% and 85%, respectively, and 10 μM UA suppressed activity by 96%. The increase in the amount 

of histamine was also suppressed depending on the concentration of UA—5 and 10 μM of UA suppressed the increase 

by 60% and 86%, respectively. UA suppressed IgE-mediated Akt phosphorylation in a concentration-dependent manner. 

Conclusions: UA (10 μM) effectively suppressed the degranulation reaction in RBL-2H3 cells induced by an antigen-

antibody reaction. This inhibitory effect was stronger than that of tranilast (50 μM), ketotifen (50 μM), and sodium 

cromoglicate (50 μM) tested in parallel. Accompanying the antigen-antibody reaction, peak Akt phosphorylation was 
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observed at 20 minutes. UA suppressed Akt phosphorylation in a concentration-dependent manner. This suggests that 

UA might suppress the degranulation reaction in RBL-2H3 cells by suppressing the signal transduction system associated 

with the antigen-antibody reaction. 

Novelty of the Study: This study is the first to report the effect of UA on mast cell degranulation. Additionally, it reveals 

that UA suppresses IgE-mediated Akt phosphorylation, suggesting a novel mechanism for its anti-allergic properties. 

These findings provide new insights into UA as a potential therapeutic compound for allergic reactions. 

Keywords: urolithin A; degranulation; mast cells; anti-allergy; Akt 

Graphical abstract: Urolithin A represses IgE-induced degranulation in RBL-2H3 cells 
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INTRODUCTION 

Type I allergy is a pathological condition that causes a 

rapid change in the general condition, mainly by an IgE 

antibody-mediated mechanism. Within minutes of 

contact with a causative antigen, measles, facial flushing, 

mucosal edema, and decreased blood pressure occur. In 

some cases, it causes cardiovascular insufficiency and 

status epilepticus and may be accompanied by serious 
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life-threatening symptoms. When IgE antibody is re-

exposed to the antigen while adhering to mast cells or 

the surface of basophils, cross-linking between the IgE 

antibodies occurs and intracellular granules are released. 

Because intracellular granules contain a large number of 

inflammatory mediators such as histamine, serotonin, 

and heparin, degranulation causes rapid vasodilation and 

increased vascular permeability. Thus, mast cells have an 

important role in type I allergic reactions, and it is 

thought that suppressing the degranulation reaction 

directly leads to the alleviation of symptoms. Therefore, 

control of the degranulation reaction of mast cells is 

important and the search for natural ingredients and 

functional food ingredients that have this effect is being 

vigorously carried out. 

Ketotifen, sodium cromoglicate, and tranilast, 

which have been developed as anti-allergic agents, all 

suppressed degranulation in mast cells [1-4]. It has been 

reported that polyphenols such as nobiletin [5], curcumin 

[6], hesperidin [5], and resveratrol [7] reduced Tumor 

Necrosis Factor (TNF) and Lipopolysaccharide (LPS)-

induced vascular endothelial cell damage in pollinosis 

animal models and relieved allergic symptoms [8-9]. 

Recently, it has been reported that urolithins, an 

intestinal metabolite of ellagic acid [10-12], have anti-

inflammatory effects [13-15], inhibit cancer metastasis 

[16, 17], and activate autophagy [17] and sirtuin genes 

[18]. In addition, the anti-allergic effect of urolithin 

ingestion in a mouse pollinosis model was reported [19]. 

The effect of urolithin on the degranulation reaction in 

mast cells that occurs during allergic reactions has not 

been reported. However, it was reported that the 

metabolism of ellagic acid to urolithin is difficult unless 

the conditions of the intestinal flora are met, even if 

foods containing ellagic acid are ingested [20-21]. 

Recently, urolithin A (UA; 3,8-hydroxydibenzo-α-pyrone, 

Figure 1) has been produced from pomegranate peel in 

Japan using a fermentation method, and its application 

as a functional food material has begun [22]. 

To investigate the anti-allergic effect of UA, a rat 

mast cell/basophil cell line, RBL-2H3, was used to 

investigate whether UA suppresses the degranulation 

reaction in mast cells. Furthermore, we examined the 

effect of UA on the activation of the signal pathway 

involved in the degranulation reaction [23]. 

      Figure 1. The structure of urolithin A. 

METHODS 

Chemicals and reagents: UA was purchased from AdooQ 

BioScience (Irvine, CA, USA). A Histamine ELISA kit was 

purchased from ImmuSmol (Talence, France). Other 

reagents were purchased from FUJIFILM Wako Chemicals 

Corporation (Osaka, Japan) unless otherwise indicated. 

Cell culture: The rat mast cell/basophil cell line RBL-2H3 

(JCRB0023) was obtained from the JCRB Cell Bank 
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(Ibaraki-Osaka, Japan) and cultured in Dulbecco’s 

Modified Eagle Medium (DMEM) supplemented with 

10% fetal bovine serum (FBS), penicillin (100 U/mL), and 

streptomycin (100 μg/mL) at 37°C in a 5% CO2 

atmosphere [24]. 

Cells were seeded into plates and allowed to settle 

for 24 h. After incubation, anti-DNP IgE (0.2 μg/mL) was 

added and incubated for another 2 h. Then, wells were 

washed with modified Tyrode (MT) buffer twice. Cells 

were treated with or without the test compound and 

incubated for 10 min. After incubation, human serum 

albumin conjugated with DNP (DNP-HSA) (0.1 μg/mL) 

was added and incubated for another 30 min. 

Cell viability assay: Cells were treated with various 

concentrations of UA for 40 min, followed by 3-(4,5-

dimethyl-2-thiazolyl)-2,5-diphenyltetrazolium bromide 

(MTT) solution. After incubation for 20 min, the medium 

was removed, dimethyl sulfoxide was added, and the 

absorbance at 620 nm was measured by a Multiscan FC 

microplate reader (Thermo Fisher Scientific Inc., MA). 

Effects of UA on the degranulation of RBL-2H3 cells: RBL-

2H3 is a widely used mast cell line that shares some 

characteristics with basophils [24-26]. β-hexosaminidase 

is stored in the secretory granules of mast cells, and it is 

commonly used as a marker of degranulation [26]. We 

measured antigen (Ag)-induced β-hexosaminidase 

release from RBL-2H3 cells to study the ability of UA to 

inhibit degranulation activity. The assay of β-

hexosaminidase release was performed as described by 

Murata et al. [27] with slight modifications. 

Briefly, the cells were seeded in a 24-well plate (2.5 

× 105/well) and cultured overnight. After incubation, 

medium in each well was exchanged with DMEM (FBS-) 

twice. The cells were sensitized with DNP-specific IgE at 

50 ng/mL for 2 h. After the cells were washed with MT 

buffer containing 137 mM NaCl, 2.7 mM KCl, 1.8 mM 

CaCl2, 1 mM MgCl2, 5.6 mM glucose, 20 mM HEPES, and 

0.1% BSA at pH 7.4, polyphenol samples diluted in MT 

buffer were added. After 10 min of incubation, DNP-HSA 

(final concentration 50 ng/mL) was added, and the 

culture was incubated for 30 min. The supernatant was 

collected, and the cells were lysed with MT buffer 

containing 0.1% Triton X-100. The cell lysate was 

purchased by centrifugation at 15,000 rpm for 15 min. 

Aliquots of each supernatant and cell lysate were 

examined for β-hexosaminidase or histamine release. β-

hexosaminidase release was performed as described by 

Watanabe et al. [24]. Aliquots of each supernatant and 

cell lysate were incubated with 1 mM p-nitrophenyl-N-

acetyl-β-D-glucosamide solubilized in 0.05 M citrate 

buffer (pH 4.5) for 30 min at 37°C. The enzyme reaction 

was terminated by the addition of 100 µl of 2 M glycine 

buffer (pH 10), and the absorbance (at 405 nm) was 

measured. The results are expressed as a percentage of 

the total content of β-hexosaminidase in the cells. 

Histamine release was measured by a Histamine ELISA kit 

(BAE-1000, ImmuSmol SAS) using the same supernatant 

used in the β-hexosaminidase assay. 

Western blot analysis: To investigate the effect of UA on 

the activation of the signal pathway involved in the 

degranulation reaction, we detected the 

phosphorylation of signal proteins by western blot 

analysis. RBL-2H3 cells were treated using the same 

method as described above. Cells were rinsed with PBS, 

scraped into cell lysis buffer M (FUJIFILM Wako Pure 

Chemical Corporation), and dissolved in complete 

protease inhibitor cocktail (Roche) and PhosSTOP®️ 

phosphatase inhibitor cocktail (Roche). After incubation 

on ice for 20 min, cell lysates were obtained by 

centrifugation at 15,000 ×g for 15 min at 4°C. Protein 

concentrations were determined by Protein Assay (Bio-

Rad, CA) and equal amounts (15 μg) of total protein were 

separated on 10% sodium dodecyl sulfate-

polyacrylamide gels at a constant current of 20 mA. 

Separated proteins were then transferred to Immobilon 
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polyvinylidene difluoride membranes (Millipore, 

Burlington, MA) at 4 mA/cm2 membrane for 1 h using a 

semi-dry blotting system. The membrane was blocked 

with 5% (w/v) Difco Skim Milk (BD Biosciences, NJ) for 1 

h at room temperature. The blocked membrane was 

subsequently probed overnight at 4°C with a 1:2,500 

dilution of the primary antibody in a 1:10 dilution of 

blocking buffer. After the membrane had been washed 

three times with Tris Buffered Saline with 0.05%Tween 

20 (TBST), it was incubated for 2 h at room temperature 

with horseradish peroxidase-conjugated antibodies 

against IgG of the animal species of the primary antibody 

and hybridized with the primary antibody. After washing 

the membrane with TBST, a chemiluminescent substrate 

(Super Signal West Pico chemiluminescent substrate, 

Thermo Fisher Sciences, Waltham, MA) was added. The 

band intensities of p-Akt, Akt, and β-actin were analyzed 

using a LAS4000 mini®️ Image analyzer (FUJIFILM, Tokyo). 

Statistical analysis: Data are expressed as the mean ± 

standard deviation (SD). Results were analyzed using 

one-way ANOVA test, and statistical significance for all 

comparisons was assigned when p < 0.05 or p < 0.01. 

RESULTS 

Effect of UA on cell viability: The effect of UA on RBL-2H3 

cell activity was examined using the MTT assay. The 

incubation time with UA was set to 40 min considering 

the reaction time with DNP-HSA. UA at 50 μM caused a 

20% decrease in viability, but at 20 μM there was little 

effect. Therefore, in this study, we used UA at a 

concentration of 20 μM or less (Figure 2). 

Figure 2. Effect of UA on the cell viability of RBL-2H3. RBL-2H3 cells were treated with UA at various concentrations for 40 min, and cell 

viability was assayed by the MTT method, as described in the Methods. All results shown are means ± SD from four independent experiments. 
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Inhibition of β-hexosaminidase release by UA: 

Degranulation caused by the reaction between IgE and 

DNP-HSA was investigated by measuring the β-

hexosaminidase activity in the culture supernatant and 

RBL-2H3 cells. Under the conditions of this experiment, 

approximately 43% of the β-hexosaminidase activity 

originally present in the cells related to the IgE-mediated 

reaction was released into the supernatant. This value 

was then set to 100% and the amount of suppression by 

UA was calculated and graphed. The degree of inhibition 

is shown with the values obtained from cells treated with 

the positive control 0.1 μM wortmannin [28] (Figure 3). 

We found 50 μM ellagic acid had little effect on β-

hexosaminidase activity in the supernatant, which was 

increased by the IgE-mediated reaction. However, UA 

suppressed β-hexosaminidase activity up to 10 μM in a 

concentration-dependent manner—1 μM and 5 μM UA 

suppressed the activity by 46% and 85%, respectively, 

and 10 μM UA suppressed the activity by 94% (Figure 3). 

We also investigated the inhibitory effects of tranilast (50 

μM), ketotifen (50 μM), and sodium cromoglicate (50 

μM), which are currently used as allergic agents, but 

these only suppressed activity by 29%, 22%, and 12%, 

respectively. 

Figure 3. UA represses the release of β-hexosaminidase from antigen-treated RBL-2H3 cells. 

RBL-2H3 cells were treated with anti-DNP IgE. After 2 h of incubation, test compounds were added to each well and incubated for 10 min. DNP-HSA was 

added to wells and incubated for 30 min to induce degranulation. β-hexosaminidase activity in the incubated supernatant and cell lysates were assayed 

as described in the Methods section. The compounds tested were blank (B), control (C), wortmannin (W), urolithin A (UA), tranilast (T), ketotifen (K), and 

cromoglicate (CR). All results shown are means ± SD of four independent experiments. Results are expressed as percentages of the control value and 

represent the mean of four independent experiments (n = 4). Significant differences between groups are indicated by *p < 0.05 or ** p < 0.01. 
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Inhibition of histamine release by UA: Because UA might 

selectively suppress β-hexosaminidase enzyme activity, 

the amount of histamine released during the 

degranulation reaction was measured by ELISA using the 

cell supernatant in which the β-hexosaminidase activity 

was measured. The reaction between IgE and DNP-HSA 

showed an increase in the amount of histamine in the 

culture supernatant, but in cells treated with UA, the 

increase in the amount of histamine was suppressed 

depending on the concentration of UA—5 μM and 10 μM 

UA suppressed histamine release by 60% and 86%, 

respectively (Figure 4). This demonstrated UA did not 

directly inhibit β-hexosaminidase activity but suppressed 

IgE and DNP-HSA-induced degranulation. However, the 

inhibitory effects of tranilast (50 μM), ketotifen (50 μM), 

and sodium cromoglicate (50 μM) were 17.5%, 3.1%, and 

1.0%, respectively (Figure 4). 

Figure 4. UA represses the release of histamine from antigen-treated RBL-2H3 cells. RBL-2H3 cells were treated with anti-DNP IgE. 

After 2 h of incubation, test compounds were added to each well and incubated for 10 min. DNP-HSA was added to wells and incubated for 30 min to 

induce degranulation. The histamine concentration in incubated supernatants was assayed by ELISA. The compounds tested were blank (B), control (C), 

wortmannin (W), urolithin A (UA), tranilast (T), ketotifen (K) and cromoglicate (CR). All results shown are means ± SD of four independent experiments. 

Results are expressed as percentages of the control value and represent the mean of four independent experiments (n = 4). Significant differences 

between groups are indicated by *p < 0.05 or ** p < 0.01. 

Western blot analysis:  

It has been reported that phosphoinositide 3-kinase 

(PI3K)/Akt is involved in the signaling pathway leading to 

IgE-mediated degranulation [29, 30]. To investigate 

whether UA suppresses the phosphorylation of Akt, 

western blot analysis of the phosphorylation signal 

induced by antigen was performed. After sensitization 

by the antigen, the phosphorylation of Akt induced by 

IgE and DNP-HSA peaked at 20 or 30 minutes and then 

gradually disappeared (Figure 5A, B). 
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Figure 5. Changes in the phosphorylation of Akt after the antigen-stimulation of RBL-2H3 cells. RBL-2H3 cells were incubated 

with IgE in DMEM (without FBS) for 2 h and then washed with MT buffer. Cells were treated with DNP-HSA for various times. Cell lysates were prepared 

and used for western blot analysis. Experiments were performed three times. (A) shows a representative pattern of detected bands. Each band was 

analyzed by a densitometrical analyzer and calculated the ratio of p-Akt to the p-Akt level in cells without stimulation by DNP-HSA. All results shown are 

means ± S.E. from three independent experiments. (B). 

The level of phosphorylated Akt at 20 or 30 min was 

6.4-fold and 7.0-fold, respectively. Therefore, the effect 

of UA on the phosphorylation of Akt at a reaction time of 

20 min was investigated. UA suppressed IgE-mediated 

Akt phosphorylation in a concentration-dependent 

manner at 20 min after sensitization by antigen (Figure 

6A, B). The p-Akt/Akt ratio of 10 μM UA-treated cells was 

reduced by 97% relative to the p-Akt/Akt ratio of DNP-

HSA-stimulated cells alone (Figure 6A, B). 

Figure 6. UA represses the phosphorylation of Akt in antigen-treated RBL-2H3 cells. 

RBL-2H3 cells were incubated with IgE for 2 h in DMEM (without FBS) and then washed with MT buffer. Test compounds 

were added to each well containing MT buffer and incubated for 10 min. Then, cells were treated with DNP-HSA for 20 min. 

Cell lysates were prepared and used for western blot analysis. The compounds tested were blank (B), control (C), 

wortmannin (W), and urolithin A (UA). Experiments were performed three times. (A) shows a representative pattern of 

detected bands. Each band in Figure 6A was analyzed by a densitometrical analyzer and calculated the ratio of p-Akt and 

Akt. All results shown are means ± S.E. from three independent experiments. (B). 
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DISCUSSION 

Ellagic acid has long been known as a polyphenol 

contained in fruits such as pomegranates, strawberries, 

and walnuts [31]. However, although the antioxidant 

activity of ellagic acid in vitro has been reported [32], 

there have been few reports of its other biological effects 

or pharmacological effects in vivo. Recently, it has been 

reported that UA in the metabolites of ellagic acid 

generated by intestinal bacteria has various physiological 

effects [33, 34]. Some of those reports suggested the 

anti-allergic effects of UA [19]. However, the effect of UA 

on degranulation reactions in obese cells, which have an 

important role in allergic reactions, has not been 

reported. 

In this study, we purchased UA from urolithins 

available as reagents and examined its inhibitory effect 

on degranulation in rat obese cells (RBL-2H3) caused by 

an antigen-antibody reaction. 

Wortmannin, used as a positive inhibitor of 

degranulation in this evaluation system [35], completely 

inhibited β-hexosaminidase and histamine secretion at 

0.1 µM in the present study. UA showed a concentration-

dependent inhibitory effect on the release of β-

hexosaminidase and histamine up to 10 µM. However, 

existing anti-allergy drugs such as tranilast, ketotifen, and 

cromoglicate, did not show repressive effects against 

antigen-antibody-triggered degranulation when 

compared with the effect of UA. In this study, the drug 

was allowed to act on the cells for less than 10 min before 

DNP IgE stimulation, and it is possible that a longer 

preincubation time was required for these existing drugs 

to be effective. In addition, these drugs have anti-

inflammatory effects, which might be linked to the 

clinical effect rather than the degranulation inhibitory 

effect. 

Wortmannin is a multi-target inhibitor of PI3K and 

MLCK with IC50s of 3 nM and 200 nM, respectively [36]. 

Therefore, this degranulation system might be mainly 

controlled by PI3K-Akt signaling. Indeed, it has been 

reported that PI3K/Akt is involved in the signal 

transduction pathway leading to the degranulation 

reaction induced by IgE and DNP IgE [29]. 

Therefore, we tried to detect phosphorylated Akt by 

western blotting to investigate whether UA suppressed 

the phosphorylation of PI3K/Akt. We found that UA 

almost completely suppressed the phosphorylation of 

Akt at a concentration of 10 µM, suggesting UA 

suppressed the degranulation reaction by blocking the 

signaling pathway associated with the phosphorylation of 

Akt. In the future, it will be necessary to investigate 

factors upstream of the signal transmission pathway. 

This study is the first to report the strong inhibitory 

effect of UA on mast cell degranulation compared with 

conventional anti-allergic agents. Additionally, we 

revealed that UA suppressed IgE-mediated PI3K-Akt 

signaling pathway, suggesting a novel mechanism related 

to its anti-allergic properties. These findings provide new 

insights into UA as a potential therapeutic compound for 

allergic reactions. 

In Japan, UA was recently produced from 

pomegranate peel using a fermentation method [22], but 

it is still difficult for many people to take it daily. If the 

constituent bacteria of the intestinal flora that efficiently 

metabolize ellagic acid to UA and their properties are 

clarified, the effect of ingredients that suppress allergic 

reactions to the daily diet might be effective. Because 

research on the function of such intestinal flora has 

begun recently [37-38], future developments in this field 

are expected. 

CONCLUSION 

UA suppressed the IgE-induced the release of β-

hexosaminidase and histamine to a greater degree than 

that of other anti-allergic drugs such as tranilast, 

ketotifen, and sodium cromoglicate. This suggests that 

UA suppresses the degranulation of mast cells by 

inhibiting the IgE-induced signal pathway. In the future, 

when UA is produced more efficiently, or when the 
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optimal intestinal microbiota population that efficiently 

produces UA from ellagic acid is clarified, UA might be an 

effective treatment for lifestyle-related diseases. 

List of Abbreviations: UA: urolithin A, TNF: Tumor 

Necrosis Factor, LPS: Lipopolysaccharide, DMEM: 

Dulbecco’s Modified Eagle Medium, FBS: fetal bovine 

serum, DNP-HSA: human serum albumin conjugated with 

2,4-dinitrophenyl hapten, MTT: 3-(4,5-dimethyl-2-

thiazolyl)-2,5-diphenyltetrazolium bromide, PBS: 

Phosphate Buffered Saline, TBST: Tris buffered saline 

containing 0.05% Tween 20, PI3K: phosphoinositide 3-

kinase, MLCK: myosin light-chain kinase. The use of the 

term 'functional food' complies with FFC standards [39, 

40]. 
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