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ABSTRACT 

Cancer remains a leading cause of morbidity and mortality worldwide, prompting growing interest in preventive 

strategies that target early molecular changes. Functional foods (FFs), defined as bioactive-rich dietary components with 

health-promoting properties, have emerged as promising modulators of cancer-related biomarkers. This article reviews 

clinical and preclinical evidence on the influence of FFs and food bioactive compounds(FBCs)on key biomarkers, including 

HER2, Ki-67, PSA, and CEA, across various cancer types. Mechanistic insights reveal that these dietary compounds exert 

their effects through epigenetic modulation, anti-inflammatory signaling, reduction of oxidative stress, and regulation of 

apoptosis and the gut microbiome. Applications of these findings extend to biomarker-based early detection, dietary 

chemoprevention, and personalized nutrition strategies. However, limitations such as biomarker specificity, variable 

bioavailability, and a lack of long-term randomized trials continue to hinder clinical translation. Future directions 

emphasize the need for integrated omics approaches, development of multi-marker panels, and personalized dietary 

interventions supported by novel delivery systems. FFs hold significant promise in oncology, but rigorous, longitudinal 

studies are essential to validate their role in cancer prevention and precision medicine. 

Novelty: This article uniquely synthesizes current clinical and preclinical evidence linking FFs and BCs to specific cancer-

related biomarkers, while emphasizing mechanistic pathways and translational challenges. It further proposes integrated 

omics-based strategies and personalized nutrition approaches to enhance biomarker-guided cancer prevention, an area 

that remains underexplored in current literature. 

Keywords: Functional foods, Bioactive Compounds, cancer biomarkers, chemoprevention, epigenetics, metabolomics, 

personalized nutrition, sulforaphane, bioavailability, dietary intervention, early detection. 
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Graphical Abstract: Precise nutritional modulation of cancer biomarkers 
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INTRODUCTION 

FFs are defined as foods that provide health benefits 

beyond basic nutrition, often due to the presence of BCs 

such as polyphenols, flavonoids, carotenoids, and 

phytosterols. These BCs are increasingly recognized for 

their role in modulating physiological functions and 

reducing the risk of chronic diseases, including cancer [1–

3]. As the field of nutritional science evolves, the 

potential of FFs to act not only as preventive agents but 

also as modulators of molecular and cellular processes 

relevant to disease progression is becoming increasingly 

evident [4–6]. 

Cancer remains one of the leading causes of death 

globally, accounting for nearly 10 million deaths in 2020 

alone, with numbers projected to rise in the coming 

decades [7]. The growing burden of cancer has intensified 

interest in non-pharmacological strategies for 

prevention, including diet-based interventions. 

Epidemiological and clinical studies suggest that regular 

consumption of certain FFs can reduce the incidence of 

specific cancers, potentially through mechanisms 

involving oxidative stress reduction, inflammation 

modulation, and cell cycle regulation [8–10]. Recent 

investigations have particularly focused on how dietary 

components may influence biomarkers associated with 

cancer initiation and progression [11–13]. 

Traditional cancer biomarkers, such as 

carcinoembryonic antigen (CEA), prostate-specific 

antigen (PSA), and cancer antigen 125 (CA-125), are 

typically used for diagnosis, prognosis, and monitoring 

treatment response. However, these markers often 

become detectable only in advanced stages of disease, 

limiting their utility in early detection [14–16]. This has 

led researchers to explore whether BCs from FFs can 

induce earlier, subtler changes in biomarker expression 

or even uncover new, more sensitive biomarkers [17–19]. 

Such interactions may pave the way for non-invasive 

screening tools that integrate dietary patterns with 

biomarker surveillance, potentially shifting cancer 

management toward prevention and early intervention. 
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This review explores the current evidence on how 

FFs and their BCS interact with cancer-associated 

biomarkers. By examining molecular pathways, clinical 

findings, and emerging research, we aim to evaluate the 

potential of functional food-derived compounds in 

enhancing the early detection and prevention of cancer 

through modulation of biomarkers.  

Research Strategy: A thorough review of available 

literature was conducted on publishing platforms such as 

PubMed and the Functional Food Center / Food Science 

Publisher journal database, to examine the methodology 

of how FFs impact biomarkers associated with cancer, 

alongside the capacity of FFs to detect and mange cancer 

potentially.  

Utilized keywords include “functional foods”, 

“cancer”, “cancer biomarkers”, “bioactive compounds”, 

“colorectal cancer and diet”, “prostate cancer and 

phytochemicals”, “breast cancer and bioactives”, “lung 

cancer and nutrition”, “pancreatic cancer and natural 

compounds”, “DNA methylation”, “HDAC inhibition”, 

“histone acetylation”, “NF-kB inhibition”, “Nrf2 

pathway”, “PD-l1 regulation”, “epigenetic modulation by 

diet”, “tumor suppressor gene reactivation”, 

“polyphenols”, “antioxidants and cancer”, “lycopene”, 

“epigallocatechin gallate”, “oxidative stress”, “apoptosis 

induction”, “sulforaphane”, and “biomarkers of dietary 

intake”. The literature spans the time frame from 2002 to 

2025, covering over two decades of research.  

Among the selected articles, the inclusion criteria 

prioritized original research articles (including clinical 

trials, cohort studies, case-control studies, in vitro and in 

vivo experimental studies), systematic reviews and meta-

analyses, human studies, or studies on relevant animal 

models, as well as publications in peer-reviewed journals. 

The chosen studies required the involvement of FFs, BCs, 

or phytochemicals in assessing molecular or epigenetic 

mechanisms linked to cancer prevention. The results of 

each study were needed to illustrate cancer incidence, 

progression, survival, or recurrence, alongside 

measurements of biomarker levels related to oxidative 

stress, inflammation, apoptosis, or epigenetic 

modulation. The studies also necessitate the inclusion of 

relevant molecular pathways (such as NF-kB, HDAC, or 

DNA methylation) and how they were modulated, 

alongside pertinent information on the safety, 

bioavailability, or efficacy of FFs or BCs.  

The exclusion criteria included editorials, 

commentaries, or conference abstracts without 

complete experimental data, non-peer-reviewed 

sources, and case reports with anecdotal evidence. 

Studies that focused on synthetic drugs without 

functional food components were excluded, alongside 

studies not involving dietary intake or supplementation 

of bioactive compounds. Studies without relevant 

cancer-related endpoints or mechanistic biomarkers 

were also excluded, along with studies lacking a 

transparent methodology.  

Overview of Cancer Biomarkers: Diagnostic biomarkers, 

such as prostate-specific antigen (PSA), cancer antigen 

125 (CA-125), and carcinoembryonic antigen (CEA), are 

essential tools for the initial detection of cancer. Dietary, 

such as curcumin (found in turmeric) and 

epigallocatechin gallate (EGCG), found in green tea, have 

demonstrated the ability to modulate these markers at 

both transcriptional and post-translational levels. For 

instance, EGCG has been shown to downregulate PSA 

secretion in prostate cancer cells through androgen 

receptor repression, while curcumin reduces CEA 

expression by impairing NF‑κB–mediated gene 

transcription [20-22]. These changes are detectable in 

the in-patient serum and provide a foundation for 

research into dietary interventions that could lower 

diagnostic biomarker levels to clinical diagnosis. 
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Prognostic biomarkers, including HER2 

overexpression in breast cancer and p53 mutations 

across multiple tumor types, carry significant 

implications for disease progression and patient 

outcomes. Resveratrol has been found to both degrade 

HER2 protein via proteasomal pathways and enhance 

acetylation of wild-type p53 by inhibiting HDACs, leading 

to the stabilization of p53 and an improved apoptotic 

response [23,24]. This modulation of prognostic markers 

at the protein expression and functional level suggests 

that sustained consumption of stilbene compounds may 

improve prognostic biomarker profiles and potentially 

delay disease progression. 

Predictive and pharmacodynamic biomarkers, such 

as PD-L1 expression, are increasingly relevant in the 

context of immune checkpoint therapies. In vitro studies 

have revealed that curcumin and EGCG attenuate PD-L1 

levels in various carcinoma lines by inhibiting STAT3 and 

NF-κB signaling [25-26]. Suppression of PD-L1 leads to 

reduced tumor cell proliferation and increased apoptosis, 

which may augment responses to PD-1/PD-L1 blockade 

and serve as early markers of therapeutic efficacy. These 

findings support the inclusion of dietary BCs in 

biomarker-driven treatment strategies. 

While not cancer-specific, inflammatory 

biomarkers, including C-reactive protein (CRP) and 

interleukin-6 (IL‑6), are mechanistically linked to tumor-

promoting inflammation. Curcumin suppresses IL-6 and 

CRP levels by inhibiting the IL-6/ERK/NF-κB axis, with 

complementary reductions observed in TNF-α and TGF-β 

in both preclinical and clinical studies [27-29]. These 

biomarker changes are quantifiable via immunoassays 

and serve as sensitive indicators of dietary modulation of 

systemic inflammation, a known driver of carcinogenesis. 

Oxidative stress markers, such as malondialdehyde 

(MDA) and 8-hydroxy-2′-deoxyguanosine (8-OHdG), 

although not unique to cancer, reflect damage to lipids 

and DNA, respectively. EGCG supplementation has been 

repeatedly shown to reduce urinary MDA and 8‑OHdG 

levels by 20–40%, while enhancing OGG1-mediated DNA 

repair mechanisms in smokers and animal models [30-

32]. These reductions highlight the antioxidant capacities 

of green tea polyphenols and position MDA and 8-OHdG 

as potential biomarkers for early chemoprevention trials. 

Proliferation and apoptosis indicators, including 

Ki‑67, Bcl‑2, and caspases, offer insight into tumoral 

growth dynamics. EGCG reduces Ki‑67 and Bcl‑2, while 

increasing Bax and activating the caspase cascade, effects 

corroborated in melanoma and thyroid carcinoma 

models [33-35]. Similarly, curcumin decreases Ki‑67 and 

Bcl‑2 via STAT3 inhibition and triggers caspase‑8–

mediated apoptosis in lung cancer cells [36-37]. Such 

pathways are measurable through 

immunohistochemistry and provide mechanistically 

relevant endpoints for dietary intervention studies. 

Epigenetic and genetic modifications, particularly 

HDAC activity and DNA methylation, are critical 

regulatory layers amenable to functional food 

modulation. Resveratrol acts as a pan-HDAC inhibitor, 

reducing HDAC2 expression by ~50% and elevating 

histone acetylation at tumor suppressor promoters [38]. 

It also induces significant promoter demethylation across 

multiple genes via DNMT1 inhibition within 48- hours in 

breast cancer models [39-40]. These epigenomic shifts 

are quantifiable through chromatin immunoprecipitation 

and methylation assays, making them viable biomarkers 

for dietary interventions that affect epigenetics. 

Functional Foods and their Bioactive Compounds: The 

anticancer potential of FFs lies not only in nutrient 

content but also in their capacity to modulate molecular 

pathways and biomarkers associated with tumorigenesis 

[41-43]. 
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Sulforaphane, a phytochemical abundant in 

cruciferous vegetables like broccoli, induces phase II 

detoxifying enzymes via Nrf2 activation and promotes 

apoptosis through caspase‑3 activation. It downregulates 

HDAC activity, leading to histone acetylation changes and 

decreased expression of proliferation markers such as 

Ki‑67 in colon and breast cancer models [44-46]. 

Curcumin, derived from turmeric, exerts anticancer 

effects by inhibiting NF-κB and STAT3 signaling, resulting 

in reduced expression of inflammatory cytokines (IL-6, 

TNF-α), proliferation markers (Ki‑67, Bcl‑2), and 

increased caspase–8–mediated apoptosis. Curcumin also 

exhibits epigenetic activity by inhibiting HDACs and 

DNMTs, thereby altering DNA methylation and histone 

acetylation in tumor suppressor genes [42, 47- 48]. 

Epigallocatechin‑3‑gallate (EGCG), the primary 

catechin in green tea, targets PI3K/Akt and mitochondrial 

pathways to decrease proliferation markers (Ki‑67), 

downregulate Bcl‑2, upregulate Bax, and activate 

caspase‑3/‑7/‑9. It simultaneously reduces oxidative 

stress biomarkers (MDA, 8‑OHdG) by enhancing OGG1-

mediated DNA repair and inducing Nrf2-dependent 

antioxidant genes [49-51]. 

Resveratrol, found in grapes and berries, functions 

as a multitarget epigenetic modulator by inhibiting 

HDACs and DNMTs, leading to histone acetylation and 

promoter demethylation of tumor suppressor genes such 

as p21 and p16. It downregulates HER2, promotes p53 

acetylation, and inhibits proliferation through STAT3 

inhibition, while also activating caspase-mediated 

apoptosis [20, 52-53]. 

Lycopene, the predominant carotenoid in 

tomatoes, exhibits anticancer activity through 

antioxidant and anti-inflammatory mechanisms. It 

scavenges reactive oxygen species, reduces oxidative 

biomarkers such as MDA, and downregulates the IGF-1 

and NF-κB pathways. It also inhibits proliferation by 

reducing IGF-1 signaling and cyclin D1 expression and 

induces apoptosis via caspase‑9 activation [54-56]. 

Influence of Bioactive Compounds on Biomarkers: 

Evidence from Clinical and Preclinical Studies. Multiple 

clinical and preclinical studies have been conducted, 

illustrating the impact of various FFsBCs on biomarkers 

used for cancer detection. Several forms of cancer, such 

as breast cancer, prostate cancer, and colorectal cancer 

have been the focus of these studies. 

Breast Cancer: BCs, specifically cruciferous vegetable 

derivatives such as sulforaphane, modulate key 

biomarkers associated with breast carcinoma 

progression, including HER2, Ki-67, HDAC activity, and 

estrogen receptor signaling. In vitro and preclinical 

experiments have repeatedly demonstrated that 

sulforaphane inhibits global HDAC activity across diverse 

breast cancer cell lines (e.g., MDA-MB-231, MCF-7), 

concomitantly decreasing expression of oncogenic 

receptors such as HER2 and ERα and activating apoptotic 

pathways [57-59]. Clinical evidence in women scheduled 

for breast biopsy further confirms that sulforaphane 

supplementation reduces peripheral blood mononuclear 

cell (PBMC) HDAC activity and Ki-67 expression in benign 

breast tissue. However, changes in malignant tissue may 

be less pronounced [60-62].  

For instance, a randomized placebo-controlled 

clinical trial involving 54 women showed that short-term 

(2-4 weeks) sulforaphane intake resulted in a significant 

reduction in Ki-67 and HDAC3 levels in benign breast 

tissue, suggesting proliferation blockade at an early stage 

of disease [60]. Preclinical studies extend these findings 

by demonstrating that sulforaphane downregulates 
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HDAC6, leading to the induction of autophagy in triple-

negative breast cancer xenografts [59]. Collectively, 

these data suggest that sulforaphane can target multiple 

biomarkers, particularly Ki-67 and HDAC activity, 

supporting its potential role in breast cancer prevention 

and adjunctive therapy.  

Prostate Cancer: The consumption of cruciferous 

vegetables or their bioactive metabolites, particularly 

sulforaphane, has been consistently linked to the 

modulation of prostate-specific antigen (PSA) and 

androgen receptor (AR) expression, as well as 

inflammatory cytokine profiles. A meta-analysis 

encapsulating over 70 000 cases revealed that higher 

cruciferous vegetable intake correlates with reduced 

prostate cancer incidence (RR 0.87 per highest versus 

lowest intake) [63]. Mechanistically, sulforaphane 

upregulates phase II detoxification enzymes (e.g., NQO1), 

and decreases AR expression while inhibiting 

inflammatory signaling in prostate tissue [64–66]. 

In the ESCAPE randomized dietary trial, men 

undergoing active surveillance who consumed a 

glucoraphanin-rich broccoli intervention for one year 

exhibited stable PSA levels and distinct transcriptomic 

changes indicative of enhanced detoxification and 

reduced inflammation, without adverse metabolic 

effects [64,65]. Another interventional study in men with 

biochemical recurrence after prostatectomy 

demonstrated that sulforaphane tablets (10 mg/day) 

slowed PSA doubling compared with a placebo, indicating 

a tangible biomarker response [66]. Observational data 

further reinforce these findings: higher intake of 

cruciferous vegetables after diagnosis was inversely 

linked to progression risk [67]. 

Colorectal Cancer: Functional food components, notably 

polyphenols, influence colorectal cancer biomarkers 

including carcinoembryonic antigen (CEA), 

Wnt/β‑catenin signaling, and markers of oxidative stress 

and inflammation. Polyphenols, such as epigallocatechin-

3-gallate and curcumin, exert antioxidative effects,

attenuating 8-oxo-dG formation, downregulating NF-κB 

and COX-2 expression, and restoring Wnt pathway 

regulation in preclinical models [68–70]. 

Although direct human trials remain limited, several 

small-scale interventions have reported decreased 

oxidative DNA damage and reduced inflammatory 

cytokine expression (e.g., IL-6, TNF-α) following dietary 

polyphenol supplementation. These shifts are often 

accompanied by modest reductions in serum CEA levels 

[71,72]. Collectively, this supports a role for polyphenol-

rich FFs in modulating colorectal cancer progression at 

the molecular biomarker level. 

Lung, Pancreatic, and Other Cancers: Emerging data 

indicate that BCs may modulate biomarkers in less 

commonly studied cancers, though the evidence base 

remains preliminary. For instance, sulforaphane has been 

shown to suppress metastatic signaling pathways (e.g., 

RAF/MEK/ERK) in triple-negative breast models, and 

early experimental data suggest similar effects in 

pancreatic neoplasia. Likewise, polyphenols and 

isothiocyanates have been shown to have potential in 

downregulating KRAS and NF-κB signaling in lung cancer 

cells in vitro [73–75]. Nonetheless, clinical corroboration 

is currently insufficient, underscoring the need for 

further targeted trials across diverse tumor types. 

Table 1 summarizes the impact of BCs on cancer-

related biomarkers, including evidence from clinical and 

preclinical trials.  
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Table 1. Functional Foods and Their Effects on Cancer-Related Biomarkers 

Mechanisms of Action Linking Functional Foods to 

Biomarker Modulation: BCs influence cancer-related 

biomarkers through multiple molecular pathways. This 

section outlines key mechanistic categories, including 

epigenetic modulation, anti-inflammatory signaling, 

oxidative stress reduction, regulation of the cell cycle and 

apoptosis, and microbiome-mediated effects. 

Epigenetic Modulation: HDAC Inhibition & DNA 

Methylation Changes: BCs such as sulforaphane and 

polyphenols alter epigenetic regulators including histone 

deacetylases (HDACs) and DNA methyltransferases 

(DNMTs), leading to changes in chromatin structure and 

gene expression. Sulforaphane inhibits HDAC activity in 

breast, prostate, and colon cancer cells, reactivating 

tumor suppressor genes and suppressing oncogene 

expression [76–78]. It also promotes the demethylation 

of gene promoters, such as Nrf2, thereby restoring the 

activation of antioxidative genes [79]. Dietary 

polyphenols, such as quercetin, similarly reduce DNMT 

and HDAC activities, thereby decreasing global DNA 

methylation and enhancing the transcription of tumor 

suppressors via histone acetyltransferase (HAT) 

activation [80,81]. 

Anti-inflammatory Pathways: NF-κB, IL-6, and TNF-α 

Downregulation: Many functional food components 

suppress pro-inflammatory signaling pathways central 

to tumor progression. Polyphenols (e.g., curcumin, 

luteolin) inhibit NF-κB activation, thereby reducing 

downstream cytokines IL-6 and TNF-α and dampening 

inflammatory gene transcription [82–84]. In vivo, dietary 

anthocyanins and phenolics decrease serum levels of IL-

6 and TNF-α and suppress NF-κB-mediated COX-2 

expression in tumor-bearing models [83, 85]. 

Sulforaphane also interferes with NF‑κB DNA binding, 

Cancer Type Functional Food / 

Bioactive 

Targeted Biomarkers 

/ Pathways 

Type of Evidence Key Findings Source 

Breast cancer Sulforaphane 

(cruciferous vegetables) 

HER2, Ki-67, HDAC 

activity, ERα 

In vitro, preclinical, 

clinical 

Lowered HER2 and ERα expression; 

lowered HDAC and Ki-67; higher 

apoptosis; autophagy induction in TNBC 

cells 

[57-62] 

Breast cancer Sulforaphane 

(cruciferous vegetables) 

HDAC3, HDAC6 Randomized 

controlled trial 

Lowered HDAC3 and Ki-67 in benign 

breast tissue after sulforaphane 

supplementation (2-4 weeks) 

[60] 

Prostate cancer Sulforaphane 

(cruciferous vegetables) 

PSA, AR, inflammatory 

cytokines (IL-6, TNF-

α), NQO1 

Meta analysis, 

clinical trials 

Lowered AR and PSA; higher detox 

enzyme activity; lower inflammatory 

gene expression; PSA doubling time 

increased 

[63-67] 

Prostate cancer Broccoli 

(glucoraphanin-rich) 

Transcriptome-wide 

inflammation/detox 

markers 

ESCAPE RCT, 

observational 

studies 

Stable PSA, beneficial gene expression 

changes, inverse correlation with 

recurrence risk 

[64-66] 

Colorectal 

cancer 

Polyphenols (EGCG, 

curcumin) 

CEA, Wnt/β‑catenin, 

8‑oxo‑dG, NF‑κB, 

COX‑2, IL‑6, TNF‑α 

Preclinical, small-

scale human trials 

↓ CEA, ↓ oxidative DNA damage, ↓ 

IL‑6/TNF‑α; Wnt signaling normalization; 

EGCG & curcumin reduce ROS and 

inflammatory mediators, improve Wnt 

pathway balance 

[68-72] 

Lung, 

pancreatic, and 

other cancers 

Sulforaphane, 

isothiocyanates, 

polyphenols 

RAF/MEK/ERK, KRAS, 

NF‑κB 

In vitro, early 

experimental 

Suppressed metastasis-related pathways 

in TNBC and lung cancer; modulated 

KRAS/NF‑κB signaling 

[73-75] 
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exerting anti-inflammatory and anticancer effects, 

particularly in pancreatic cancer models [86]. 

Oxidative Stress Reduction: ROS Scavenging & Nrf2 

Activation: FFs enhance endogenous antioxidant 

defenses. Sulforaphane, polyphenols, and flavones 

activate the Nrf2/ARE pathway, leading to the 

transcription of cytoprotective enzymes (e.g., NQO1, HO-

1, GPx) that lower ROS levels and prevent oxidative DNA 

damage [79, 87]. Flavones the activation of oxidative 

stress–linked biomarkers. Luteolin further potentiates 

Nrf2 activity, reinforcing antioxidant protection and 

mitigating the activation of oxidative stress–linked 

biomarkers [88]. These effects counteract oxidative 

stress that promotes tumorigenesis and inflammatory 

signaling. 

Cell Cycle & Apoptosis: Bcl‑2, Caspases & Tumor 

Suppressor Activation: BCs promote cancer cell 

apoptosis by modulating Bcl-2 through the regulation of 

Bcl-2 family proteins and caspase cascades. Luteolin and 

sulforaphane downregulate anti-apoptotic Bcl‑2/Bcl‑xL, 

upregulate Bax, and increase caspase‑3 and caspase‑9 

activation in cancer cells, leading to programmed cell 

death [83,84,89]. These molecular changes result in cell 

cycle arrest at the G0/G1 phase and suppression of the 

proliferative biomarker Ki‑67, reinforcing the anti-

proliferative effects. 

Microbiome Interactions: Metabolite-Host Biomarker 

Crosstalk: Emerging research highlights how dietary BCs 

modulate the gut microbiome and its metabolites, 

impacting host biomarker regulation. For example, 

polyphenol-rich diets alter microbial composition, 

increasing the production of short-chain fatty acids (e.g., 

butyrate), which functions as an HDAC inhibitor and anti-

inflammatory agent, thereby modulating biomarkers 

such as NF-κB and Nrf2 [90-91]. Glucosinolate 

metabolites from cruciferous vegetables undergo 

microbiome-mediated transformation, leading to 

bioactive isothiocyanates that influence epigenetic 

regulators and detoxification biomarkers [92]. While 

these pathways are less thoroughly characterized than 

others, they suggest a convergence of diet, microbiome, 

and systemic biomarker modulation. 

Applications in Early Detection and Preventive 

Strategies: FFs and BCs have significant potential for 

early cancer detection and prevention by modulating 

non-invasive biomarkers measurable in urine, blood, or 

tissue. Clinical studies indicate that intake of 

sulforaphane-rich broccoli extracts increases urinary 

isothiocyanate levels, which correlate with reduced 

proliferation markers (e.g., Ki‑67) in bronchial epithelium 

and reduced urinary toxicant burden in former smokers 

[93–95]. These findings support the feasibility of using 

urinary sulforaphane metabolites both to monitor 

dietary adherence and to serve as early indicators of 

tissue-level biomarker modulation in at-risk individuals 

[95]. Moreover, quantitative analysis of short-chain fatty 

acids (SCFAs) in feces or serum, especially butyrate, has 

emerged as a putative biomarker for colorectal cancer 

prevention, reflecting modulation of HDAC activity and 

immune regulation [96–98]. 

Chemoprevention trials in high-risk populations 

have demonstrated that sustained dietary intake of 

cruciferous vegetables or concentrated sulforaphane 

supplements elicits favorable biomarker responses. A 

randomized phase II trial in individuals with premalignant 

bronchial lesions demonstrated that daily sulforaphane 

supplementation over 12 months significantly decreased 

Ki-67 proliferation indices in lung tissue, accompanied by 

activated apoptotic markers [93]. Similarly, investigations 

in former smokers revealed enhanced detoxification 

enzyme activity and suppressed DNA damage in 

peripheral and pulmonary tissues after broccoli-derived 

supplement regimens [93,99]. These trials demonstrate 

the utility of FFsBCs as preventive interventions targeting 
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early molecular changes that precede malignant 

transformation. 

Integrating dietary biomarker monitoring with 

conventional surveillance methods, such as imaging or 

genetic profiling, enhances early detection strategies. 

Urinary isothiocyanate levels can complement PSA 

monitoring in prostate screening, particularly when 

linked to GST polymorphisms impacting sulforaphane 

metabolism [100,101]. Likewise, quantitative SCFA 

profiling, coupled with fecal DNA testing, may refine 

colorectal cancer risk models by combining microbial 

metabolite signatures with genetic and epigenetic 

biomarkers [96,98]. Such layered surveillance 

approaches offer more sensitive and personalized risk 

stratification than conventional modalities alone. 

Personalized nutrition harnesses biomarker-

informed feedback to tailor dietary interventions. 

Interindividual variation in GST enzyme genotype alters 

sulforaphane metabolism and tissue biomarker 

responses, indicating that genetic screening (e.g., 

GSTT1*/GSTM1 null variants) could guide the dosing of 

cruciferous foods for optimal chemopreventive efficacy 

[101]. Additionally, individual gut microbiome 

composition—shaping isothiocyanate bioavailability and 

SCFA production—suggests the potential for microbiome 

profiling to inform targeted dietary strategies that 

maximize biomarker modulation [96,102]. Together, 

these approaches support a precision nutrition 

framework, where diet is customized based on biomarker 

outcomes to enhance prevention in genetically or 

environmentally predisposed individuals. 

Limitations and Challenges: Functional food–induced 

biomarker changes are frequently constrained by limited 

specificity; many candidate markers, such as circulating 

carotenoids, vitamin C, or short-chain fatty acids, are not 

unique to cancer biology but instead reflect general 

nutritional status, inflammation, or lifestyle factors [103-

105]. For example, dietary biomarkers such as plasma 

vitamin C or urinary flavanol metabolites can increase 

with increased fruit and vegetable intake, yet fail to 

distinguish between cancer prevention and improved 

general health [103,105]. Similarly, butyrate levels may 

increase with fiber-rich diets but do not exclusively 

indicate colorectal neoplasia prevention without context 

[104,106]. This nonspecificity complicates the 

interpretation of biomarker shifts following functional 

food interventions, limiting their diagnostic and 

predictive utility in oncology. 

Bioavailability and metabolism of phytochemicals 

present critical hurdles in translating laboratory data to 

human outcomes. Many BCs, including curcumin and 

sulforaphane, exhibit low oral bioavailability and rapid 

systemic clearance, resulting in tissue exposures that are 

notably lower than those observed in vitro [107-109]. 

Genetic variations, such as those in the GSTM1 or GSTT1 

enzymes, alongside individual differences in gut 

microbiota, further influence the absorption, 

metabolism, and excretion of these compounds, creating 

wide interindividual variability [108,110-111]. 

Consequently, the significant epigenetic or anti-

inflammatory effects observed under controlled 

conditions are challenging to replicate in diverse human 

populations, undermining dose-response predictability 

based on biomarker responses. 

Despite promising short-term interventions, the 

field lacks robust longitudinal data linking FFs, biomarker 

modulation, and cancer outcomes. Most randomized 

controlled trials to date are of limited duration (often <12 

months), focus on surrogate biochemical endpoints (e.g., 

Ki‑67 or PSA), operate with small sample sizes, and are 

insufficient to evaluate cancer incidence or progression 

[112-114]. There have been few large-scale, long-term 

RCTs that integrate dietary interventions with multi-

omics biomarker panels and clinical endpoints due to 

high costs, logistical complexity, and ethical 

considerations [113,115]. Without such longitudinal 

evidence, claims regarding the efficacy of FFs and BCs in 

cancer prevention remain provisional, highlighting the 
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pressing need for multi-year, adequately powered clinical 

trials to validate biomarker-guided dietary strategies. 

Functional Food Science: Bridging Bioactive 

Compounds, Biomarkers, and Cancer Management: This 

review highlights the significant potential of FFs and their 

constituent BCs in modulating cancer-associated 

biomarkers, offering new avenues for early detection and 

prevention. This area of inquiry is intrinsically linked to 

functional food science, an interdisciplinary field to 

understanding how food components provide health 

benefits beyond basic nutrition. Functional food science 

aims to identify, characterize, and validate the biological 

activities of these compounds, translating complex 

molecular interactions into practical dietary strategies 

[116-117]. It provides the scientific backbone for 

classifying foods that can significantly impact health 

beyond basic nutritional value [117-118]. 

Functional food science explores how specific v, 

such as polyphenols, carotenoids, and various plant 

extracts, interact with cellular pathways involved in 

carcinogenesis and tumor progression [118,119]. This 

extends to their influence on biomarkers of 

inflammation, oxidative stress, cellular proliferation, and 

even genetic stability, all of which are critical indicators 

in cancer development and progression [119,120]. 

Studies in this field demonstrate how certain functional 

ingredients can exert anti-inflammatory and antioxidant 

activities, which are essential to mitigating cellular 

damage that often precedes cancer [118, 121]. By 

systematically investigating these interactions, functional 

food science provides the evidentiary basis for 

developing food products specifically designed to exert 

beneficial effects on health, including a reduction in 

cancer risk [116, 119, 122]. 

Ultimately, the rigorous methodologies employed 

in functional food research enable the creation of 

functional food products that can directly target cancer-

associated biomarkers. This offers a proactive approach 

to prevention by mitigating risk factors and holds 

promise for supporting early detection efforts through 

measurable changes in these biomarkers. The continuous 

pursuit of understanding how dietary patterns affect 

disease outcomes, particularly through the regulation of 

inflammatory and oxidative stress signaling pathways, 

underpins this field [120,123]. Embracing FFs and their 

BCs within a robust scientific framework offers a 

sustainable, accessible, and complementary strategy in 

the ongoing fight against cancer, underscoring the critical 

role of food in maintaining optimal health and potentially 

shifting the paradigm towards dietary interventions in 

cancer care [115,122]. 

Future Directions: Future research should focus on 

developing comprehensive diet-responsive biomarker 

panels that integrate multiple molecular changes 

induced by FFs. Instead of relying on single biomarkers, 

multiplex panels combining epigenetic, inflammatory, 

oxidative, and microbiome-derived markers could offer 

greater specificity and sensitivity in early detection or 

monitoring dietary interventions. For example, combined 

measurement of promoter methylation patterns (e.g., 

Nrf2 or GSTP1), serum IL‑6/TNF‑α levels, urinary 

isothiocyanates, and plasma short-chain fatty acids has 

been proposed as a robust signature of cruciferous 

vegetable intake and chemopreventive activity [123-

125]. Validating such multi-marker panels in pilot human 

studies would represent a significant advancement in the 

development of precision nutrition biomarkers [126]. 

The integration of multi-omics platforms, including 

metabolomics, proteomics, and transcriptomics, will be 

essential for elucidating the mechanistic pathways linking 

functional food compounds to biomarker modulation in 

cancer prevention. Untargeted metabolomic profiling 

has already revealed novel bioactive metabolites and 

metabolic shifts following dietary interventions with 

sulforaphane and polyphenols [127-129]. Likewise, 

proteomic analyses have detected changes in key 

signaling networks, such as those regulated by NF-κB and 

Nrf2, in response to dietary bioactives [128,130]. The 

harmonization of these omics layers in cohort studies can 
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enable systems-level modeling of diet–biomarker–

disease interactions, accelerating identification of 

actionable targets. 

Conducting large-scale, population-based trials that 

deliver functional food interventions tailored to 

individual genetics and microbiome composition 

represents a key next step. Randomized trials with 

crossover designs incorporating GST polymorphisms or 

microbiome stratification have demonstrated differential 

biomarker responses to sulforaphane intake [131-133]. 

Scaling these designs to diverse populations—with 

longitudinal follow-up for cancer incidence or 

progression—could clarify which individuals benefit most 

from specific dietary strategies and enable the 

development of personalized public health 

recommendations. Digital health tools for monitoring 

dietary adherence and real-time biomarker feedback will 

further enhance trial precision and scalability [132,134]. 

Advances in novel delivery systems, such as 

nanoparticle formulations, liposomal encapsulation, and 

prodrug design, offer promising solutions for the 

bioavailability challenges inherent to dietary bioactives. 

For instance, curcumin-loaded nanoparticles improve 

plasma half-life and tumor tissue penetration in animal 

models, yielding more pronounced biomarker responses 

than unformulated compounds [135-137]. Similarly, 

glucoraphanin embedded in sustained-release matrices 

has demonstrated enhanced systemic exposure and 

more robust induction of detoxification enzymes in 

human pilot studies [138-140]. Future trials should 

evaluate these technologies in the context of 

chemoprevention, assessing both pharmacokinetic 

improvements and downstream biomarker and clinical 

outcomes. 

Hypothesis: Based on the current synthesis of clinical and 

preclinical evidence, we hypothesize that targeted 

dietary interventions utilizing FFs rich in BCs can 

modulate cancer-associated biomarkers in a manner that 

is both predictive and preventative. Specifically, we 

propose that sustained intake of select FF constituents, 

such as sulforaphane, curcumin, EGCG [141], and 

resveratrol[142], can elicit measurable shifts in molecular 

biomarkers related to inflammation, oxidative stress, 

epigenetic regulation, and tumor cell proliferation. These 

shifts may occur at subclinical stages and therefore hold 

promise as early indicators of cancer risk modulation. 

         Curcumin has demonstrated anti-inflammatory and 

antioxidant effects in chronic conditions and cancer-like 

diseases, including improved biomarker profiles in 

streptozotocin-induced diabetic models and the 

modulation of inflammatory cytokines [141]. 

Furthermore, we propose that integrating 

functional food interventions with biomarker-based 

monitoring, particularly within a personalized nutrition 

framework, may enable real-time tracking of disease 

susceptibility and therapeutic responsiveness. This 

approach would benefit from the development of multi-

biomarker panels informed by metabolomic, proteomic, 

and epigenomic data to capture the complex, systemic 

effects of dietary bioactives. Such a model would not only 

advance our understanding of diet–cancer interactions 

but could also contribute to stratified prevention 

strategies tailored to individual risk profiles. 

Future research should aim to validate this 

hypothesis through longitudinal, controlled human trials 

that incorporate FF interventions alongside multi-omics 

biomarker monitoring. The ultimate goal is to determine 

whether diet-driven biomarker modulation can serve as 

a valuable tool in personalized cancer prevention and 

early detection paradigms. 

In future research, the assessment of sulforaphane, 

as a functional food ingredient should adhere to a 

comprehensive, multi-phase evaluation process, such as 

the framework developed by the Functional Food Center. 

This model includes defined benchmarks for 

demonstrating both the biological effectiveness and the 

structural integrity of potential functional food products 

[143–144].  

CONCLUSION 

FFs present a compelling avenue for modulating cancer-

related biomarkers, offering molecular-level effects that 

span epigenetic regulation, inflammation, oxidative 
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stress, and immune signaling. A growing body of 

preclinical and clinical evidence supports their ability to 

influence key biomarkers associated with carcinogenesis, 

including Ki-67, PSA, CEA, and HDAC activity, among 

others. These effects not only suggest therapeutic 

potential but also highlight the role of FFs and BCsin early 

detection, monitoring, and cancer prevention strategies. 

Importantly, functional food–induced biomarker 

shifts have demonstrated value as non-invasive 

indicators of physiological response, dietary adherence, 

and potential risk modification in high-risk populations. 

When insights into the complex interactions between 

nutrition, gene expression, and cancer-related pathways. 

In parallel, emerging technologies in biomarker detection 

and delivery systems are helping to address long-

standing challenges related to specificity and 

bioavailability. 

Despite this progress, the translation of functional 

food research into clinical practice remains constrained 

by variability in individual response, limited long-term 

data, and insufficient integration with personalized 

medicine frameworks. To fully realize their clinical utility, 

future studies must adopt more rigorous designs (such as 

incorporating stratified cohorts, multi-omics analyses, 

and extended follow-up) to validate the preventive and 

diagnostic relevance of diet-modulated biomarkers. 

Personalized nutrition approaches, grounded in genetic 

and microbiome profiling, will be essential for tailoring 

functional food interventions and ensuring their effective 

implementation in cancer prevention and care. 
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