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ABSTRACT

Background: Immunosuppression, whether caused by disease, stress, or medical treatments, compromises host defense
by disrupting both innate and adaptive immune responses. Natural compounds such as Ganoderma lucidum,
polygonatum, and mulberry leaves have long been used in traditional medicine for their immune-enhancing properties,
yet their efficacy is often limited by low bioavailability. Biotransformation offers a promising approach to enhance the
bioactivity of these medicinal-food homologous substances, but its potential in restoring immune function has not been

fully explored.

Objective: The objective of this study was to investigate whether active medicinal-food homologous complex nutrients
(AMCN) formulation containing Ganoderma lucidum, polygonatum, and mulberry leaf could restore immune function in
an immunodeficient zebrafish model. Specifically, we aimed to evaluate its effects on both innate and adaptive immune
cell populations, including neutrophils, macrophages, and T cells, as well as its ability to modulate key immune-related

cytokines.

Methods: AMCN was prepared by culturing Ganoderma lucidum mycelia, followed by enzymatic biotransformation with
polygonatum and mulberry leaf powders and subsequent fermentation with Lactobacillus plantarum. Transgenic

zebrafish larvae were used as an in vivo model to evaluate immunomodulatory effects. Immune suppression was induced

using cyclophosphamide, and larvae were exposed to AMCN to assess immune recovery. Changes in innate and adaptive
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immune cell populations and key cytokine expression were analyzed to determine the efficacy of AMCN.

Results: AMCN treatment significantly restored immune cell populations in immunodeficient zebrafish, increasing
neutrophils, macrophages, and T cells compared with the model group. It also upregulated key pro-inflammatory

cytokines, including tnf-a, il-12a, and ifn-y.

Conclusion: AMCN effectively restores both innate and adaptive immune cell populations in an immunodeficient

zebrafish model, highlighting its potential as a natural immunomodulatory agent.

Novelty of the study: This study is the first to show that a biotransformed complex of AMCN can restore both innate and
adaptive immune cell populations in an immunodeficient zebrafish model. AMCN exhibited broad immunostimulatory
effects, upregulating key cytokines and highlighting biotransformation as a strategy to enhance the bioactivity of

medicinal-food homologous substances for mitigating immunosuppression.

Key words: AMCN, biotransformation, immunomodulation, zebrafish model.
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Graphical Abstract: Active medicinal-food homologous complex nutrients (AMCN) and their immunomodulatory effects

in a zebrafish model.
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INTRODUCTION cytotoxic treatments such as chemotherapy and

The immune system is essential for host defense,
immune surveillance, and tissue homeostasis. In cancer
patients, immune function is frequently impaired, either

due to the tumor microenvironment or because of

radiotherapy [1-2]. Immunosuppression in these patients
can lead to increased risk of infection, slower recovery,
and poor therapeutic outcomes [3]. There is thus an

unmet clinical need for safe, effective agents that can
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support or restore immune function—ideally from
natural sources that offer both therapeutic benefit and
favorable safety profiles.

In traditional Chinese medicine, certain natural
substances are classified under the concept of
“homology of medicine and food”, meaning they can be
used both as therapeutic agents and as part of the daily
diet to promote health and prevent disease [4]. Among
these, Ganoderma lucidum [5], polygonatum [6], and
mulberry leaf [7] are well-known for their immune-
supporting properties and long history of use in East
Asian medicine. These natural substances are rich in
polysaccharides, flavonoids, glycoproteins, and other
bioactive compounds that have been shown to modulate
immune responses, reduce inflammation, and provide
antioxidant protection [4-7]. However, the natural forms
of these materials often contain large, complex
molecules that are difficult for the human body to absorb
efficiently. For example, Ganoderma lucidum in its native
form has a hard outer spore shell, which must be broken
to release its bioactive content [8-9]. Polygonatum and
mulberry leaf are traditional medicinal plants rich in
polysaccharides, flavonoids, and other bioactive
compounds. However, their oral bioavailability is limited
due to the presence of high molecular weight
polysaccharides, glycosylated flavonoids, and poor
lipophilicity, which hinder intestinal absorption [10-11].

To overcome this limitation, we applied
biotransformation—a process that uses microbial
fermentation or enzymatic catalysis to break down
macromolecules into smaller, more bioavailable
compounds. This approach not only improves intestinal
absorption but can also enhance the pharmacological
activity of the resulting metabolites [12]. In the case of
active medicinal-food homologous complex nutrients
(AMCN), we hypothesize that the modified product
exerts stronger immune-enhancing effects than its
unprocessed form. A similar rationale applies to the
biotransformed forms of Polygonatum and mulberry leaf

used in our study.
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To evaluate the immunomodulatory potential of
these biotransformed compounds, we utilized a zebrafish
model of immunosuppression, which mimics the features
of hematopoietic dysfunction and immune cell depletion
commonly observed in cancer patients [2, 13]. Zebrafish
are increasingly recognized as a powerful model
organism for studying vertebrate immunity due to their
conserved hematopoietic pathways [14], optical
transparency during early development [15], and
availability of transgenic lines that express fluorescent
markers in key immune cell populations [16-18]. The
zebrafish immune system includes both innate
components—such as macrophages and neutrophils—
and adaptive components like T lymphocytes, allowing
for comprehensive analysis of immune responses in vivo.

In this study, we first evaluated the in vivo toxicity
of AMCN to confirm its safety. We then used transgenic
zebrafish lines to quantify changes in macrophages,
neutrophils, and T cells following treatment with AMCN.
Finally, we investigated the molecular mechanisms
underlying these immune enhancements through
quantitative real-time PCR (gRT-PCR) analysis of immune-

related genes.

MATERIALS AND METHODS

Production of AMCN: Single-clone isolates of
Ganoderma lucidum (strain CICC 14021; China Center of
Industrial Culture Collection, China) were initially
cultured on potato dextrose agar (Huankai Microbial,
Guangzhou, China) plates. Agar plugs containing actively
growing mycelium were transferred to a medium
containing 40 g/L of D-glucose (G116306, Aladdin
Biochemical Technology, Shanghai, China) 5 g/L of
peptone (P304955, Aladdin Biochemical Technology), 5
g/L of yeast extract (Y110517, Aladdin Biochemical
Technology), 0.46 g/L of monopotassium phosphate
(P113045, Aladdin Biochemical Technology) and 0.5 g/L
of magnesium sulfate heptahydrate (M431166, Aladdin

Biochemical Technology). A total of 25 mL of liquid
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cultures were incubated in 250 mL Erlenmeyer flasks at
30 °Cin the dark with agitation at 100 rpm.

B-Glucosidase activity in the culture supernatant
was quantified using a B-glucosidase activity assay kit (B-
glucosidase Assay Kit, Solarbio, Beijing, China). When
enzymatic activity exceeded 100 mU/mL, cultures were
centrifuged at 5000 rpm for 10 minutes to collect the
supernatant. The supernatant was then supplemented
with 1.5% (w/v) polygonatum powder (Shanghai All-Plus-
One Health Technology, Shanghai, China), 1.5% (w/v)
Ganoderma lucidum powder (Shanghai All-Plus-One
Health Technology) and 1.5% (w/v) mulberry leaf powder
(Shanghai All-Plus-One Health Technology). This mixture
was incubated for an additional 24 hours under the same
conditions to allow  biotransformation.  After
biotransformation, cultures were centrifuged again at
5000 rpm for 10 minutes. The supernatant was
inoculated with Lactobacillus plantarum at a final
concentration of 1 x 107 CFU/mL to produce the AMCN.
L. plantarum strain Vege-start 60 (MAT NO: 696265), a
probiotic starter culture optimized for fermentation, was
obtained from Chr. Hansen (No. 10 Jintong West Road,
Chaoyang District, Beijing, China).

Subsequently, 10% (w/v) maltodextrin (M434571,
Aladdin Biochemical Technology), 10% (w/v) mannitol
(M108831, Aladdin Biochemical Technology), and 2%
(w/v) D-(+)-trehalose dihydrate (D425084, Aladdin
Biochemical Technology) were added as lyophilization
protectants to the final supernatant. The mixture was
stirred thoroughly for at least one hour to ensure uniform
dispersion. Following mixing, the solution was subjected
to freeze-drying using a laboratory freeze-dryer until a
constant weight was achieved. Care was taken to ensure
the resulting lyophilized powder was homogeneous and
free of polysaccharide precipitation. All lyophilized
powders were weighed and the weights recorded. The
powders were then ground and sieved to obtain a
particle size of approximately 100 mesh. The final

product was designated as AMCN. The lyophilized AMCN
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powder was packaged in 1 kg aluminum foil bags and
stored at room temperature, protected from direct

sunlight.

Zebrafish husbandry and embryo collection: Zebrafish
were maintained and bred as described in our previous
study [19]. Briefly, adult zebrafish were housed in a
recirculating water system at 28°C under a 14h
light/10 h dark photoperiod and fed three times daily. For
embryo collection, male and female zebrafish were
paired at a 1:1 ratio in the evening and separated by a
divider. The divider was removed the following morning
to allow spawning within the first hour of the light cycle.
Fertilized larvae were collected and maintained in 1 x E3
medium supplemented with methylene blue (0.3 ppm)
(M196499, Aladdin Biochemical Technology) at 28.5 °Cin
an incubator until use. All zebrafish experiments
conducted in our study were approved by Institutional
Animal Care and Use Committee (MDL2025-03-04-03).
Adult zebrafish and transgenic zebrafish larvae were bred
and housed by Baihuan Biotechnology (Guangzhou,
China).

Immunomodaulatory Activity Assessment
Analysis on neutrophil number in zebrafish model:
Meloperoxidase (mpo) is a well-known neutrophil
marker in zebrafish [18]. Tg(mpo:EGFP) zebrafish are a
transgenic line that expresses enhanced green
fluorescent protein (EGFP) under the control of the mpo
promoter, allowing for the specific labeling and in vivo
visualization of neutrophils (18). Tg(mpo:EGFP) zebrafish
larvae (2 dpf) were randomly distributed into 6-well
plates, with 30 larvae per well. AMCN was administered
at concentrations of 12.5, 25, and 50 pg/mL. Three
experimental groups included normal control, model,
and treatment groups. All groups except the normal
control group were exposed to 20 pg/mL of
cyclophosphamide to induce immune suppression. All
treatments were conducted at 28 °C for 48 hours. After
treatment, 10 larvae per group were randomly selected

and imaged under a fluorescence microscope (MZX81,
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Mingmei shot, Guangzhou, China). The number of
neutrophils in the caudal vein was quantified using NIS-

Elements software.

Analysis on macrophage levels in zebrafish model:
Macrophage expressed gene 1 (mpeg1) is a macrophage-
specific gene in zebrafish [17]. Tg(mpegl:EGFP) zebrafish
are a transgenic line in which mpegl promoter drives the
expression of EGFP, allowing specific visualization of
macrophages in vivo [17]. Thirty Tg(mpegl:EGFP)
zebrafish larvae (2 dpf) were randomly distributed into 6-
well plates under the same conditions as described
above. Following the same treatment scheme and
exposure to AMCN (12.5, 25, and 50 pg/mL) in the
presence or absence of cyclophosphamide as described
above, the larvae were incubated at 28 °C for 48 hours.
Subsequently, ten larvae from each group were randomly
selected and imaged under the MZX81 fluorescent
microscope. The levels of fluorescent intensity of
macrophages in the caudal vein was quantified using NIS-

Elements software.

Analysis on T-cell levels in zebrafish in zebrafish model:
Recombination activating gene 2 (rag2) is a well-known T
lymphocyte-specific marker in thymus, which is highly
conserved across vertebrates, including mice, humans
and zebrafish [20]. Tg(rag2: dsRed) zebrafish are a
transgenic line in which the rag2 promoter drives
expression of Discosoma red fluorescent protein (dsRed),

allowing enabling specific detection of lymphoid
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progenitor cells, particularly T cells in the thymus [16].
Thirty Tg(rag2:dsRed) zebrafish (2dpf) larvae were
randomly distributed into 6-well plates under the same
conditions, followed by treatment with AMCN (12.5, 25,
and 50 pg/mL) in the presence or absence of
cyclophosphamide as described above. Following a 48-
hour incubation at 28°C, 10 larvae per group were
randomly selected for imaging, and the levels of
fluorescence intensity of T-cells were quantified in the

caudal vein using NIS-Elements software.

Analysis of gene expression
Green, fluorescent neutrophil transgenic zebrafish
larvae (2 dpf) were used to assess immune gene
expression. The larvae were treated as in section 3.1
and incubated at 28 °C for 48 hours. Subsequently, total
RNA was extracted from the larvae in each group using
the RNeasy Universal RNA Extraction kit (Qiagen, MD,
USA) according to the manufacturer’s protocol. RNA
concentration and purity were assessed by UV-Vis
spectrophotometry. A total of 2 ug of RNA was reverse
transcribed into cDNA using a First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific, MA, USA) in a
final volume of 20.0uL. Quantitative real-time PCR (gRT-
PCR) was performed to measure the relative expression
levels of the pro-inflammatory genes, tumour necrosis
factor-a (tnf-a), interleukin-12a  (il-12a), and
interferon-gamma (ifn-y), with 8-actin serving as an
endogenous control. Each experiment was conducted in

triplicate. The primers used for this assay are listed in

Table 1.

Table 1. The sequence of primers used in gPCR.

Gene Primer Sequence (5' to 3')
B-actin Forward TCGAGCAGGAGATGGGAACC
Reverse CTCGTGGATACCGCAAGATTC
tnf-a Forward GCGCTTTTCTGAATCCTACG
Reverse TGCCCAGTCTGTCTCCTTCT
il-12a Forward AACTCCTACAAGCCCAGCAC
Reverse ACACTCGGTCGTCAAACGAA
Ifn-y Forward CTTTCCAGGCAAGAGTGCAGA

Reverse TCAGCTCAAACAAAGCCTTTCG
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Statistical Analysis: Statistical analysis was performed
using one-way ANOVA followed by Dunnett’s post hoc
test to compare the normal control and AMCN treatment
groups against the model group. All quantitative data are
presented as mean * standard error (SE). Analyses were
conducted using GraphPad Prism software (version 8.0.2,
GraphPad Software Inc., CA, USA) in a blinded manner. A

p-value < 0.05 was considered statistically significant.

RESULTS

AMCN increases the number of neutrophils in zebrafish
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model: To determine whether AMCN modulates
the immune system in our immunodeficient zebrafish
model, we first examined its effect on neutrophils—key
effectors  of innate immunity [21]—using
Tg(mpo:EGFP) larvae. Compared with the normal
control group, the model group exhibited a ~30%
reduction in neutrophil numbers (Fig. 1A&B),
confirming  successful establishment of  the
immunodeficient model. Importantly, AMCN

treatment significantly increased neutrophil numbers

by ~14% relative to the model group.
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Figure 1. Effect of AMCN on neutrophil counts in the zebrafish larvae. (A) Representative images of Tg(mpo:EGFP) zebrafish larvae

(4 dfp) after 48 h of AMCN treatment. White dotted areas indicate the regions used for quantification. Scale bar = 100 um. (B) Quantification

of neutrophil numbers in the caudal vein. Data are presented as mean + SD (n=10 per group), ** p<0.01 and *** p<0.001 vs. Model group (one-way ANOVA

with Dunnett’s post hoc test).

AMCN increases the number of macrophages in
zebrafish model: We next evaluated the effect of AMCN
on macrophages, another key cell type responsible for
phagocytosis of cellular debris in zebrafish [22], using
Tg(mpegl:EGFP) larvae. In the normal control group,

macrophage numbers were highest, representing

baseline levels in zebrafish larvae (Fig. 2A & B).
Compared with the normal control, macrophage
numbers in the model group were reduced by ~54%.
Strikingly, AMCN treatment significantly restored
macrophage abundance, leading to a ~57% increase

relative to the model group.
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Figure 2. Effect of AMCN on macrophage levels in the zebrafish larvae. (A) Representative images of Tg(mpegl:EGFP) zebrafish
larvae (4 dfp) after 48 h of AMCN treatment. White dotted areas indicate the regions used for quantification. Scale bar = 100 um. (B)
Quantification of macrophage levels by fluorescence intensity in the caudal vein. Data are presented as mean + SD (n=10 per group), *** p<0.001 and

**%* pn<0.0001 vs. Model group (one-way ANOVA with Dunnett’s post hoc test).

AMCN increases the levels of T cells in zebrafish model: the model group exhibited a ~45% reduction in

We next examined the effect of AMCN on T cells using thymic fluorescence intensity, indicating a marked

Tg(rag2:dsRed) zebrafish larvae. Because T cells within decrease in T cell levels (Figure 3A & B). Notably,
the thymus were tightly clustered and individual cell

AMCN treatment significantly increased fluorescent
counts could not be reliably obtained, fluorescent

intensity by 61% relative to the model group,
intensity was used as a surrogate measure of T cell

. suggesting a robust restoration of T cell populations.
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Figure 3. Effect of AMCN on T cell levels in the zebrafish larvae. (A) Representative images of Tg(rag2: dsRed) zebrafish
larvae (4 dpf) after 48 h of AMCN treatment. White dotted areas indicate the regions used for quantification in the thymus. Scale bar =
100 um. (B) Quantification of T cell levels by fluorescence intensity in the thymus. Data are presented as mean * SD (n=10 per group), ** p < 0.01 and

**%* p <0.0001 vs. Model group (one-way ANOVA with Dunnett’s post hoc test).
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AMCN increases pro-inflammatory genes in zebrafish
model: Given that AMCN treatment could elevate the
levels of key immune cell types in the zebrafish model,
we further investigated the mechanisms by which AMCN
influences the immune system by assessing several pro-
inflammatory cytokine genes known to be involved in the
regulation of innate immunity- namely tnf-a, il-12a and
ifn-y [21-23].

Our gRT-PCR demonstrated that the expression of

tnf-a was markedly reduced in the model group
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compared to the normal control, whereas the AMCN
treatment significantly increased the expression of tnf-a
e, as compared to the model (Figure 4, left panel). Similar
to tnf-a, the expression levels of il-12a and ifn-y were also
significantly lower in the model group as compared to the
normal control, and the AMCN treatment led to
statistically significant increases in the levels of
expression of these genes (Figure 4, middle and right
panels). These findings suggest that AMCN upregulates

the expression of key pro-inflammatory cytokine genes.
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Figure 4. Effect of AMCN on relative gene expression of tnf-a, il-12a and ifn-y in the zebrafish larvae assessed by qRT-PCR

Data are presented as mean + SD (n=3 per group), * p<0.05, ** p<0.01, *** p<0.001 and **** p<0.0001 vs. Model group (one-way ANOVA

with Dunnett’s post hoc test).

DISCUSSION

In this study, we investigated the immunomodulatory
effects of AMCN, a biotransformed complex of
Ganoderma lucidum, polygonatum, and mulberry leaf, in
an immunodeficient zebrafish model. Our findings
provide compelling evidence that AMCN promotes
recovery of innate and adaptive immune functions by
restoring neutrophil, macrophage, and T cell populations,
while simultaneously enhancing the expression of key
pro-inflammatory cytokine genes, including tnf-a, il-12a,
and ifn-y. These results highlight AMCN as a promising
natural agent with the capacity to counteract
immunosuppression, a common and clinically significant

complication in cancer and other chronic diseases.

Innate immune cells such as neutrophils and
macrophages form the first line of defense
against pathogens, clearing cellular debris and
providing signals that  shape
[21].  In
the number of neutrophils and macrophages was

adaptive  responses

our immunodeficient zebrafish model,
markedly  reduced, consistent  with immune
suppression. Treatment with AMCN significantly
increased the abundance of both cell types, suggesting
that AMCN helps

competence. Neutrophils are particularly critical for

restore innate immune

acute antibacterial defense [24], and their depletion is
strongly associated with heightened infection risk in
cancer patients undergoing chemotherapy [25].
By partially restoring neutrophil levels, AMCN may
help mitigate

neutropenia-related  complications.

Similarly,


http://www.ffhdj.com/

Functional Foods in Health and Disease 2025; 15(11): 796 — 807

macrophages contribute to tissue repair and antigen
presentation [26]. The ability of AMCN to recover
macrophage numbers suggests a broader role in
maintaining immune homeostasis and facilitating
immune recovery following cytotoxic stress. The
concurrent increase in tnf-a and il-12a expression further
supports this interpretation. TNF-a, produced by
activated macrophages and other cells, promotes
inflammation, enhances phagocytosis, and recruits
additional immune effectors [27-28]. IL-12a is a pivotal
cytokine linking innate and adaptive immunity, as it
drives the differentiation of naive T cells into Th1 effector
cells [29]. The upregulation of these cytokines by AMCN
indicates that its immunostimulatory effects are not
limited to the numerical recovery of cells, but extend to
the functional activation of innate immune pathways.
The adaptive immune system, particularly T cells,
plays a central role in long-term immune protection and
anti-tumor surveillance [30]. In our zebrafish model,
thymic T cell levels were substantially reduced under
immunodeficient conditions, consistent with impaired
adaptive immunity. Remarkably, AMCN treatment
restored T cell levels, as evidenced by a significant
increase in thymic fluorescence intensity in Tg(rag2:
dsRed) larvae. This finding is noteworthy because
recovery of adaptive immunity is often slow and
incomplete in immunocompromised states following
chemotherapy [31]. The increase in ifn-y expression
provides additional mechanistic support. IFN-y, primarily
secreted by T cells and natural killer cells, enhances
antigen presentation, activates macrophages, and
contributes to anti-viral and anti-tumor defenses [32].
Elevated ifn-y levels in AMCN-treated zebrafish suggest
that not only are T cells numerically restored, but their
functional activity may also be enhanced, although
further functional studies are required. Together, these
results demonstrate that AMCN could exert
immunomodulatory effects that bridge both innate and

adaptive arms of the immune system in zebrafish.
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Biotransformation using microbial or enzymatic
processes can break down macromolecules into smaller,
more bioavailable metabolites, while sometimes
generating novel compounds with enhanced
pharmacological activity [33]. A distinctive feature of
AMCN is the use of biotransformation to process
Ganoderma lucidum, polygonatum, and mulberry leaf.
Natural forms of these materials are rich in bioactive
compounds but often suffer from poor oral bioavailability
due to high molecular weight polysaccharides and
complex glycosylated structures [8-11]. Previous studies
have shown that biotransformed Ganoderma lucidum
polysaccharides exhibit stronger immunostimulatory and
anti-tumor effects compared with their unprocessed
counterparts [34-35]. Similarly, fermentation-derived
flavonoid metabolites from mulberry leaf and
polygonatum display improved antioxidant and immune-
supporting activities [36-37]. Our findings suggest that
AMCN benefits from these advantages, providing
improved immune restoration compared with what
might be expected from the unprocessed materials.

Immunosuppression remains a major barrier to
effective cancer therapy. Chemotherapy-induced
immunodeficiency, including neutropenia and
lymphopenia, is often associated with increased risk of
infections, delayed recovery, and reduced
responsiveness to immunotherapies [38]. Current clinical
approaches to address immunosuppression, such as
granulocyte colony-stimulating factor or chimeric antigen
receptors-T cell therapy, can be effective but are
associated with significant cost and adverse effects,
including bone pain, fatigue, or excessive inflammatory
responses [39-41]. Nutritional immunomodulators
derived from medicinal-food homologous substances,
such as AMCN, may potentially provide safer and more
accessible adjunctive strategy. Their dual status as both
food and medicine make them attractive candidates for

long-term use in vulnerable patient populations,
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including cancer survivors and the elderly, where safety
and tolerability are paramount.

While our study provides important insights, several
limitations must be acknowledged. First, zebrafish serve
as an excellent vertebrate model due to conserved
hematopoietic pathways [14], but differences from
mammalian immunity necessitate validation in mouse
and human systems. Moreover, our analysis focused on
three immune cell populations and cytokines. Future
studies using single-cell RNA sequencing or proteomics
would provide a more comprehensive understanding of

AMCN’s effects on immune networks.

CONCLUSION

AMCN, a biotransformed complex of Ganoderma
lucidum, polygonatum, and mulberry leaf, effectively
restored key innate and adaptive immune cells and
enhanced pro-inflammatory cytokine expression in an
immunodeficient zebrafish model. These results highlight
its potential as a safe and natural agent to support

immune function in immunocompromised conditions.
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