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ABSTRACT: 

Cells are physiologically ready to accumulate lipids such as triacylglycerides in the cytoplasm. 

Five classes of perilipin (PLIN) family proteins are known to be involved in the process of 

intracellular lipid accumulation. PLIN2 is expressed ubiquitously including adipocytes, 

hepatocytes and macrophages. Over-expression of PLIN2 is demonstrated in the lesions of 

fatty liver diseases and atherosclerosis. Suppression of PLIN2 expression prevents from 

developing these pathological conditions in animal models, suggesting that PLIN2 could be a 

therapeutic target molecule for excessive intracellular lipid accumulation which leads to 

various metabolic derangements. The PLIN2 gene promoter has two important cis-acting 

elements in close proximity:AP-1 element which mediates inflammatory signals and PPRE 

which mediates free fatty acid effect. In NMuLi mouse liver cells, FFA such as oleic acid 

requires both functional AP-1 and PPRE simultaneously to stimulate the promoter activity, 

indicating the presence of intimate interaction of inflammatory and metabolic signals on this 

gene. Pycnogenol
R
, French maritime pine bark extracts, suppressed the oleic acid-induced 

PLIN2 expression and lipid accumulation in NMuLi cells. We found that Pycnogenol
R
 did not 

suppress the PLIN2 promoter activity or AP-1 binding to DNA. Instead, Pycnogenol
R
 

facilitates the PLIN2 mRNA degradation, leading to suppression of lipid accumulation. This 

effect seems to be independent of antioxidant effect of Pycnogenol
R
. We raise the idea that 

PLIN2 is a putative target molecule for prevention of pathological condition induced by 
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excessive lipid accumulation, and this class of natural compounds could be putative therapeutic 

modalities. 
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INTRODUCTION: 

Most types of cells accumulate lipids in the cytoplasm in a form of lipid droplets, because 

lipids are indispensable for living cells or organisms. Intracellular lipid droplets are energy 

storage in adipocytes. Lipid droplets provide materials for production of steroid hormones and 

eicosanoids as well. Lipids are components of cell membranes, transferred to whole body in a 

form of lipoprotein, and excreted as milk [1]. To date, five structurally related proteins are 

known to be involved in lipid droplet formation in the cells [2, 3]. These are called perilipin 

family proteins: perilipin (PLIN)1 (perilipin), PLIN2 (ADRP or adipophilin), PLIN3 (Tip47), 

PLIN4 (S3-12) and PLIN5 (OXPAT or MLDP) [4]. PLIN2 was identified adipocyte precursor 

cells during the process of adipocyte maturation, thus originally named adipose 

differentiation-related protein (ADRP) [5]. Among these 5 classes of proteins, PLIN2 is 

ubiquitously expressed, not only in adipocytes but also other cell types including hepatocytes, 

macrophages and so on [6].  

Fig.1  PLIN2 is a lipid droplet-associated protein. GFP-labeled PLIN2 (ADRP) was forcedly 

expressed in Swiss 3T3 cells. PLIN2 (ADRP) promotes intracellular lipid accumulation. A representative single 

cell is shown. Oil-red O staining shows the lipid droplets in the cytoplasm. GFP-labeled PLIN2 locates on the 

surface of lipid droplets. (Modified from ref. 8, with permission). 

 

Physiological function of PLIN2 has not been fully elucidated as yet. PLIN2 stimulates 

uptake of long chain fatty acids [7]. We and others showed that forced expression of PLIN2 

promotes lipid accumulation and lipid droplet formation in fibroblasts [8] (Fig.1), hepatic 

stellate cells [9] and macrophages [10]. PLIN2 acts on lipid packaging in concert with PLIN3 

and PLIN4 [11]. We found that, in addition to PLIN2, PLIN3 is also specifically related to 

triacylglyceride (TAG) accumulation in macrophages [12, 13]. It has been proposed that fatty 
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acids, which are taken-up or de novo synthesized in the cells, are transported to endoplasmic 

reticulum (ER) lipid bilayer, and TAGs are synthesized and packaged [14]. PLIN2 is likely to 

be co-translated on the ER membrane in parallel with TAG synthesis. Thus, PLIN2 plays an 

important role for TAG accumulation and lipid droplet formation. Whatever the precise 

mechanism is, organisms are always ready for energy storage as a form of TAG during excess 

of nutrients. Actually, PLIN2 protein is rapidly degraded through proteasomal pathway when 

lipids are not available [15, 16]. Organisms might have acquired “depository genes” like 

PLIN2 during the process of evolution in order to survive the starvation, which could maximize 

the function of “thrifty genes” [17].  

 

PLIN2 could be a putatve therapeutic target molecule: Despite the physiological 

importance of lipid storage in cells, excessive or inappropriate lipid accumulation causes not 

only obesity but also various metabolic derangements. Increased expression of PLIN2 has been 

proved in these pathological conditions. In atherosclerotic lesions, high expression of PLIN2 

mRNA was demonstrated [18, 19]. Up-regulation of PLIN2 expression was observed in human 

fatty liver and rodent model of liver steatosis induced by high fat diet [20]. 

Adenovirus-mediated PLIN2 transgenic mice developed fatty liver and increased TAG content 

in the liver (Sonoda N et al, unpublished observation). It was shown that increased expression 

of PLIN2 protein in skeletal muscle negatively correlates with insulin sensitivity [21], although 

the opposite finding was also reported [22]. 

On the other hand, a number of reports demonstrated that reduced or deficient expression 

of PLIN2 decreases intracellular lipid accumulation, leading to amelioration of these 

pathological conditions in animal models. Genetic ablation of the PLIN2 gene reduced the 

number of lipid droplets in foam cells in atherosclerotic lesions in ApoE
-/- 

mice and protected 

the mice against atherosclerosis [23]. PLIN2
-/- 

mice showed reduced hepatic TAG content and 

were protected against fatty liver formation [24, 25]. Antisense oligonucleotide-mediated 

reduction of PLIN2 in the liver also ameliorated hepatic steatosis, hypertriglyceridemia and 

insulin resistance in Lep
ob/ob 

as well as diet-induced obese mice [26]. 

Taken together, all these results indicate that PLIN2 plays a significant role not only in 

physiological but also in pathological accumulation of intracellular lipids. And these findings 

implicate that PLIN2 could be a possible therapeutic target molecule. Thus, the reduction of 

PLIN2 expression could be effective for treatment or prevention of conditions induced by 

excessive intracellular lipid accumulation such as fatty liver disease or atherosclerosis. Based 

on this presumption, we have been searching for putative synthetic or natural compounds 

which suppress the PLIN2 expression, and been finding out the mechanism of the action. 
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Regulatory mechanism of the PLIN2 gene by free fatty acids: Inflammo-metabolic 

connection: It is necessary to disclose the regulatory mechanisms of PLIN2 gene expression in 

order to achieve our purposes. Long-chain, but not short-chain, free fatty acids such as oleic 

acid effectively stimulate the expression of PLIN2 mRNA and its protein in NMuLi mouse 

liver cells (Fig.5A) [27]. We have characterized a 2.8kb region of the mouse PLIN2 gene 

promoter and identified several important cis-acting elements for regulation of the gene [15, 

27].  

Fig.2  Inflammo-metabolic connection. Two important cis-acting elements, Ets/AP-1 composite 

element and PPAR-response element (PPRE), are located in close proximity, both in mouse and human PLIN2 

gene promoter.  AP-1 mediates inflammatory signals. PPRE mediates the effects of specific chemical PPAR 

ligands, while the effect of long-chain free fatty acids is mediated both by AP-1 and PPRE. This surmise is proved 

in Fig.3 and Fig.4. 

 

We, as well as others, identified a peroxisome proliferator-activated receptor (PPAR) 

response element (PPRE), which responds to specific PPAR ligands as well as long-chain fatty 

acids, at 2kb up-stream of the transcriptional start site [15, 28]. Additionally, we identified an 

Ets/AP-1 composite element, which is located closely to the PPRE on its upstream (Fig.2). It is 

well known that AP-1 proteins are representative mediators of inflammatory stimulation. 

Sequence of the region encompassing these elements is well conserved between mouse and 

human genes (Fig.2). Although we demonstrated that transcription factors PU.1 and AP-1 

conjointly bind to the Ets/AP-1 composite element and exert the maximal promoter activation 

in macrophages [15], only AP-1 recognizes the element in NMuLi liver cells because this cell 
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line does not express PU.1 or other Ets family transcription factors [27].  

Fig. 3 Oleic acid requires both AP-1 and PPRE to stimulate the PLIN2 promoter activity. 

A) Schematic presentation of the PLIN2 promoter-driven luciferase constructs. X denotes the loss of function 

mutation artificially introduced. B) Oleic acid-induced increase in the promoter activity was diminished by 

deletion of all three functional elements, PPRE mutation or AP-1 mutation. Ets mutation showed decreased basal 

promoter activity but was still responsive to oleic acid; (Modified from ref. 27, with permission). 

 

In order to characterize the function of these elements, we constructed a series of 

promoter-luciferase constructs (Fig.3A) and assessed promoter activity. Oleic acid stimulated 

the activity of wild type promoter (-2090bp), while -1889bp promoter, which lacks all three 

elements, and PPRE-mutated promoter (Pmut) failed to respond to oleic acid as expected 

(Fig.3B). Interestingly, stimulatory effect of oleic acid also diminished in the AP-1 mutation 

(Amut) (Fig.3B). This mode of action of oleic acid is totally different from that of specific 

PPAR ligands. Thus, synthetic ligands for PPAR, , and  did stimulate the promoter activity 

of AP-1 mutation, while oleic acid did not (Fig.4). These results indicated that metabolic 

factors such as free fatty acids, activate PLIN2 expression through or in conjunction with an 

inflammatory mediator AP-1. We named this interaction as “inflammo-metabolic connection”, 

and PLIN2 is a target molecule of this connection. In addition to the function as a ligand for 

PPARs, long-chain fatty acid activates membrane receptors such as GPR40 and GPR120 (29, 

30). It was also reported that oleic acid activates AP-1 activity through ERK1/2 activation (31).  

 



Functional Foods in Health and Disease 2013; 3(9):353-364                                Page 358 of 364 

 

 

 

Fig. 4 Effect of specific PPAR ligands is mediated only by PPRE. Specific PPAR ligands, 

troglitazone (PPAR), GW501516 (PPAR) and fenofibrate(PPAR) could stimulate the AP-1-mutated promoter 

(Amut). Their stimulatory effects were only diminished in PPRE-mutated promoter (Pmut). Note that PPAR 

expression vector was co-transfected when tested the effect of PPAR ligand, because NMuLi cells do not express 

PPAR. These effects are totally different from oleic acid (OA) shown in the box. (Modified from ref. 27, with 

permission). 

 

Pycnogenol
R
 suppresses lipid accumulation by facilitating the PLIN2 mRNA 

degradation in liver cells: We have been looking for putative compounds which suppress the 

PLIN2 expression. Although PLIN2 expression is suppressed by chemical compounds such as 

PI3 kinase inhibitors in macrophages (15) and NMuLi cells (Ikuyama S unpublished 

observation), this class of compounds is not suitable for clinical application. Therefore, we 

have been searching a candidate compound that fulfills our purpose among natural products. 

We focused on Pycnogenol
R
 (kindly provided by Horphag Research, Geneva, Switzerland), 

which is an extract from the bark of French maritime pine and has been used as a historical 

medicinal material for the treatment of scurvy, skin wound and sores (32). Various beneficial 

effects of French maritime pine bark extract have been disclosed to date, including the effects 

on cardiovascular disorders, diabetes and so on, and the underlying biological mechanisms 
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have also been investigated (33). Pycnogenol
R
 is a mixture of phenols, polyphenols, taxifolin 

and condensed flavonoids, and has a strong anti-oxidant effect (34). The Anti-inflammatory 

effects of Pycnogenol
R
, such as effects on TNF--induced or NFB-mediated gene expression, 

were also disclosed (35, 36). We expected that these biological properties were to be fit for 

suppression of PLIN2 expression considering the regulatory mechanism of the gene. 

 

Fig. 5 Pycnogenol
R
 suppresses the PLIN2 expression and intracellular lipid accumulation 

in NMuLi liver cells. A) Pycnogenol
R
 (PYC) suppressed oleic acid induced increase in the PLIN2 mRNA 

(upper panel) and protein (lower panel). B) Pycnogenol
R
 suppressed oleic acid-induced lipid accumulation (Oil 

red O staining); (Modified from ref. 27, with permission). 

 

As expected, we found that Pycnogenol
R
 suppressed oleic acid-induced PLIN2 mRNA 

expression in parallel with its protein level (Fig.5A). In concert with this effect, Pycnogenol
R
 

suppressed oleic acid-induced lipid accumulation in NMuLi cells (Fig.5B). Considering 

possible biological effects of Pycnogenol
R
 as mentioned above and functional importance of 

AP-1 in the PLIN2 promoter, we presumed that Pycnogenol
R
 would suppress the PLIN2 gene 

expression at the transcriptional level. In contrast to our presumption, Pycnogenol
R
 did not 

inhibit the PLIN2 promoter activity (27). In addition, AP-1 binding activity in nuclear extracts 

prepared from Pycnogenol
R
-treated cells was also not reduced (27). These results suggested 

that Pycnogenol
R
 exerted other action on the PLIN2 mRNA expression.  Therefore, we 

assessed a half-life of PLIN2 mRNA in the presence or absence of Pycnogenol
R
. As shown in 

Fig. 6, the half-life of PLIN2 mRNA was significantly reduced in the presence of Pycnogenol
R
; 

an estimated half-life was 6 hours in the presence of Pycnogenol
R
 while 11 hours in the absence 

of Pycnogenol
R
. Thus, Pycnogenol

R
 facilitates the PLIN2 mRNA degradation, reduction in 

PLIN2 protein, thus leading to suppression of lipid accumulation in the cells.  
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Fig. 6 Pycnogenol
R
 facilitates the PLIN2 mRNA degradation. PLIN2 mRNA level was assessed 

by Northern blot analysis (A) and Real-time PCR (B). (Modified from ref. 27, with permission). 

 

Although dominant biological effects of Pycnogenol
R
 have been attributed to its 

antioxidant property (34), its suppressive effect of the PLIN2 expression could not be 

explained by the antioxidant action, and seems to be specific. Curcumin and astaxanthin, which 

are well-known antioxidant substances (37, 38), failed to suppress the oleic acid-stimulated 

PLIN2 mRNA expression (27). In addition, DNA binding of AP-1 and NFb, typical 

redox-sensitive transcription factors, was not inhibited by Pycnogenol
R
 (12, 27). We presume 

that Pycnogenol
R
 could modify the activity of probable stabilizing or destabilizing factors of 

the PLIN2 mRNA, although this surmise has not been proved. 

 

CONCLUSION: 

In this review, we described “depository genes” such as PLIN family proteins that act on the 

lipid accumulation. In particular, molecular mechanism of the PLIN2 expression was 

elaborated based on the results of our investigation. And we raised the idea that PLIN2 could be 

a possible molecular target for prevention or therapy of the pathological conditions associated 

with excessive intracellular lipid accumulation, like fatty liver disease or atherosclerosis. In 
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this regard, the agents which suppress the PLIN2 expression should be guaranteed safety-wise. 

We have not yet found possible candidate chemical compounds which meet this purpose. 

Functional food like Pycnogenol
R
, could be a promising natural compound although the 

clinical usefulness should be strictly verified. 
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