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ABSTRACT 

Chronic kidney disease (CKD) is a general term for a diverse variety of causes affecting kidney 

structure and function. The term “chronic” is because the damage to the kidneys happens 

slowly over a long period. Damaged kidneys cannot filter extra water and wastes out of blood 

as compared to the healthy kidneys. The disease prognosis and control are categorized based 

on disease severity, which is evaluated by glomerular filtration rate (GFR) and albuminuria, 

and clinical diagnosis. Progression of CKD thus causes wastes to build up in the body and is 

associated with many severe complications, including increased incidence of cardiovascular 

disease, hyperlipidemia, anemia, and metabolic bone disease. 

Forty percent of CKD is a result of complications associated with diabetes. Patients with 

diabetes are suggested to intake components that have reduced amount of carbohydrates and 

increased amount of proteins. Patients with CKD are suggested to intake a low protein diet. 

Thus, there is a fine need for CKD patients to understand the food constituents and functional 

components. Given the intricacies of the renal diet and the difficulties faced by patients due to 

conflicting recommendations and complexities faced in understanding processed food labels, 

there is a lot of emphasis in the present world to change the focus in CKD away from what not 

to eat to the concept of good nutrition as positive medicine or therapy for kidney patients.  

Specifically, there has been a surge in consumer interest on the beneficial role of specific 

foods with physiologically-active food components, so-called functional foods benefitting 

CKD. In the past century, increased attention to lifestyle and healthy diets has led to an increase 

in demand for functional foods. 

Thus, this review will discuss the key components that have been investigated in vivo using 

rodent models, some clinical trials and studies for being identified as a ‘nutraceuticals’ for 

patients with CKD. 
 

Keywords: Chronic kidney disease, Functional food, Conjugated Linoleic acid, LDL, HDL, 

Protein diet, Omega fatty acids, L-Carnitine. 
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INTRODUCTION  

Chronic kidney disease (CKD) is  a serious and universal health problem that its occurrence is 

increasing rapidly with more than one million people with CKD dying every year[1-3]. Fifteen 

percent of US adults are estimated to have CKD[2]. There is more than a 50-fold increase in 

prevalence of patients with earlier stages of CKD (stages 1-4), defined as albuminuria or 

decreased glomerular filtration rate (GFR), compared with patients who had been treated for 

kidney failure.[4] Approximately, 26 million individuals (13% of the noninstitutionalized USA 

adult population) are now expected to have CKD which represents, an increase from 10% in 

last 10 years[4,5]. Ninety six percent of people with kidney damage or mildly reduced kidney 

function are not aware of having CKD. One in three patients with diabetes develops CKD in 

their lifetime[6,7]. 

Irrespective of the severity of CKD, healthy eating is an essential part of a kidney care 

plan[8,9] as diet may have an adverse effect on other organs[10]. Healthy eating can help 

reduce the workload on the diseased kidneys and help regulate residual kidney function, control 

the build-up of wastes in the body, prevent infection, prevent muscle loss and help control 

blood sugar in the case of diabetes[11]. 

In the past century, the link between nutrition and human health has also been strongly 

established by modern science. Emerging evidence also indicates that certain foods or their 

components might mitigate disease risk[12,13] and promote general health[14,15] and well-

being[16-19]. 

Prescribed diets focus on regulating and eliminating unhealthy food components such as 

saturated and trans fats, sodium, added sugar, etc. Alternatively, the widespread awareness that 

foods not only provide basic nutrition but can also prevent diseases and ensure good health has 

now attained greater prominence, thus increasing the quest for potentially beneficial nutrients 

or Functional Foods (FF)[12,13,20]. Functional food have been shown to be beneficial for 

the chronic diseases[14,15,21,22] including cardiovascular disease[23-29], reduction in 

inflammation of various organs[30-32], protects organ systems[33,34] including brain[35]. 
 

  
Figure 1: Schematic of functional food and its effect on disease and organ systems. Functional 

food has a role in reducing inflammation which is responsible for initiation of many diseases. It helps 

in reducing cardiovascular disease, chronic diseases and improves brain and other organ health. 

 

Schematic diagram for the role of FF on metabolism, its protective effect in disease and 

its role in organ systems have been shown in Figure 1. 

There is no official definition of FFs common to all countries, but the European Union 

project “Functional Food Science in Europe” (FUFOSE)[36,37] gives an appropriate working 

definition: “A food can be regarded as ‘functional’ if it is satisfactorily demonstrated to affect 
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beneficially one or more target functions in the body[38], beyond adequate nutritional effects, 

in a way that is relevant to either an improved state of health and well-being and/or reduction 

of risk of disease[39,40]. 

Functional foods must remain foods and they must demonstrate their effects in amounts 

that can normally be expected to be consumed in the diet: they are not pills or capsules, but 

part of normal food. In addition to their nutritional characteristics, they positively influence 

one or more physiological functions[41].  

A functional food can be a natural food, a food to which a component has been added, or 

food from which a component has been removed by technological or biotechnological means. 

It can also be food where the nature of one or more components has been modified or any 

combination of these possibilities. A functional food might be functional for all members of a 

population, or for particular groups of population, which might be defined, for example, by age 

or by genetic constitution. 

Efficacy of functional foods is related to the bioactive compounds and the technical 

treatments applied to the food. The most important challenge is to ensure that the functional 

ingredients will survive and remain "active" and "bio-available" even after the processing and 

storage[41]. 

Research studies have demonstrated that functional foods when consumed as a part of a 

custom diet provides significant physiological advantages and is also instrumental in 

reducing the progression of chronic disease beyond basic nutritional function. This functional 

property concerns the metabolic or physiological role of the supplement or non-supplement 

nutrient in development, advancement and other physiological elements of the human 

body[20]. 

 

CKD and Poly Unsaturated Fatty Acids (PUFA) 

The lipids of all higher organisms contain a significant amount of PUFA. PUFA can be 

classified based on the saturation degree of their carbon chains. Saturated Fatty acids consist 

of a higher number of hydrogen atoms compared to monounsaturated fatty acids and 

polyunsaturated fatty acids (PUFAs). 

Extensive research and multiple reports have reaffirmed the dietary significance of 

unsaturated fats and their health benefits concerning cardiovascular disease[23-29] and 

CKD[42-45]. PUFA’s are essential because they cannot be synthesized by the human body. 

Polyunsaturated fats have reported anti-inflammatory properties[46], which has been 

suggested, may protect against kidney damage in adults[47]. 

Studies conducted by De Mello et. al., and others have shown an inverse correlation 

between the increasing level of albuminuria with polyunsaturated fatty acids (PUFA)[48,49]. 

Experimental diets with higher PUFA content such as replacing red meat with a chicken-based 

diet exhibit a reduction in albuminuria and improved serum fatty acid profile[48,50]. This 

decrease in albuminuria signifies better renal function amongst the intervention study 

group[48,50]. 

Reports suggest that dietary administration of polyunsaturated or monounsaturated fatty 

acids decrease glomerulosclerosis and glomeruli loss in rodent models of diabetic nephropathy 

and hypertension[51,52]. However, consumption of saturated fats has been reported to be 

associated with an increase in albuminuria irrespective of the  race or diabetes status of the 

patients[53,54]. Albuminuria has been considered as a reason for diseases like cardiovascular 

diseases, CKD and mortality. Dietary fat intake is a potentially modifiable behavior that could 

be a target for intervention in nephropathy. 
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It is thus suggested that including dietary nourishment with low quantities of immersed fat 

or PUFA may be advantageous in prevention of the progression of CKD and can be utilized as 

a ‘supplement’.  

 

Effect of Fish oil on cardiovascular complications and CKD 

Fish oil contains omega fatty acids, which has been reported to have beneficial effects on 

cardiovascular disease[23-29]. EPA and DHA, both the omega-3 fatty acids may be lower in 

blood and tissue of patients undergoing dialysis. Thus, dialysis patients need supplementation 

of EPA and DHA and need to find foods that contain EPA and DHA (i.e., fish and meat)[55]. 

Fish consumption, which is the primary source of EPA and DHA, may be limited by social 

dietary habits and financial constraints present in patients undergoing dialysis in the USA. 

There is a need for the recommendation to the patients with CKD for amount of fish to be taken 

in their diet. As hemodialysis is found to increase the oxidation, thus, increased omega-3 

peroxidation might be happening in the patients undergoing dialysis[56]. Peroxidation causes 

breakdown of fatty acyl structure and loss of its biologic function. As patients with CKD are 

kept on low potassium diet, consumption of the omega-3 parent fatty acid ALA should be 

reduced.  

Thus, there is very limited data available on fatty acid levels in dialysis patients. Three 

studies found low plasma levels of parent omega-3 and/or omega-6 fatty acids[57,58], 

Arachidonic acid (AA)[57-59], and EPA[59,60] compared with their matched controls. In a 

fourth study, a low red blood cell membrane EPA levels were found in dialysis patients[60]. 

Bowden et. al., reports that cardiovascular parameters for hemodialysis patients showed that 

addition of fish oil (omega-3 fatty acid) containing 160 mg eicosapentaenoic acid (EPA) and 

100 mg docosahexaenoic acid (DHA) as compared to corn oil (omega-6 fatty-acid source) for 

six months indicated that LDL levels were increased more in patients taking corn oil, but HDL 

levels increased significantly in patients taking fish oil[61]. Thus, this study suggests that EPA 

and DHA intake can inhibit the rate of increase in LDL and promote the HDL formation. In a 

larger randomized clinical trial, Svensson et. al., compared omega-3 PUFA supplementation 

(45% EPA and 37.5% DHA) with olive oil (control supplement) in 206 hemodialysis (HD) 

patients for the period of three months[62]. These data suggest that omega-3 supplemented 

group had significantly lower serum triglycerides; however, there was no effect on total 

cholesterol, HDL, LDL, lipoprotein(a), or apoprotein B levels. Similar to the previous studies, 

Vernaglione et. al., compared omega-3 supplementation (2 g/day) with similar dose of olive 

oil for four months in 24 HD patients[63]. Although, there were no differences in lipid 

concentrations between the groups, the systolic, diastolic, and mean blood pressure were 

significantly lower with the omega-3 intervention[63].  

Although the results of these studies are not very consistent, they do suggest that the 

inexpensive and relatively safe intake of omega-3 fatty acids may be effective in lowering the 

risk of cardiovascular disease in HD patients. The mechanism appears to involve modulation 

of such risk factors like LDL, triglycerides, and BP while increasing HDL, which are protective 

factors in HD patients. 

These findings are not well interpretable because of the following reasons: Contradictory 

results from these studies, a very small number of patients enrolled in the study (patients 

number ranging between 9 and 25 except one trial of 206 patients); there are missing data on 

EPA, DHA, and other fatty acid levels or important fatty acid ratios (e.g., omega-6:omega-3); 

there is heterogeneity in measurements of parameters (i.e., plasma versus red blood cell levels); 

differences in demographic and ethnicity (one African, two North American and one 
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European,) that could affect omega-3 dietary intake; and heterogeneity in study inclusion 

criteria. Thus, there is a need for more thorough research to be done in defining omega-3 status 

in the dialysis population after considering the above-mentioned parameters. 

To compare the amount and the ration of DHA and EPA, we searched for ten popular 

brands of fish oil containing DHA as well as EPA. Based on the brands we found varying 

concentrations of DHA and EPA (Table 1). Further, we calculated the ratio of DHA and EPA 

and found that there are 7 brands out of 10, which have a ratio of 0.65-0.66 suggesting that this 

ratio is well accepted for consumption. One of the brands has the lower ratio of 0.50 and two 

other brands have higher ratio of 0.75-0.80.  

 

Table 1. The levels of intake of DHA and EPA supplied by different brands. The ration of DHA 

and EPA in the last column showing that the ration of 0.66 is more common. 
 

Brand DHA (mg) EPA (mg) Ratio (DHA/EPA) 

Dr. Martins 900 1200 0.75 

Advocare Omegaplex 200 300 0.66 

Kirkland Signature Natural Fish Oil 

Concentrate 

100 150 0.50 

Coromega 230 350 0.65 

Lucky vitamins 120 180 0.66 

Omega-3 700 240 360 0.66 

Carlson Super Omega 3 Fish Oils 200 300 0.66 

Omega-3 700 240 360 0.66 

Omacor 375 465 0.80 

Vitamin World Naturally Inspired 200 300 0.66 

 

Association between CKD and Linolenic acid 

Conjugated Linolenic Acid (CLA) is produced naturally in grass-fed ruminants such as cattle, 

sheep, buffalo, goats, and in trace amount in chicken and turkey. They are synthesized by 

fermentative bacteria, Butyrivibrio fibrisolvens, which isomerize the linoleic acid in CLA or 

by synthesis via α9-desaturase of 11-trans octadecanoic acid [64,65] . CLA is a mixture of 

isomers of linoleic acid with conjugated double bonds that constitute the most abundant fatty 

acid with conjugated dienes (CDs) in humans. Conjugated linolenic acid (CLNA) are found in 

plant seeds, such as catalpa seed, bitter gourd seed, pomegranate seed, trichosanthes seed, tung 

seed, pot marigold seed, jacaranda seed, and snake gourd seed. Several studies done in humans 

and animals indicated that CLNA can be metabolized into CLA[66]. 

Evidence based on animal studies have shown that CLA has anti-atherosclerotic, 

antidiabetic, anti-inflammatory, and immune-modulating properties[67-71]. A recent study on 

3806 men aged between 60-79 without prevalent heart failure followed up for an average of 

13 years suggests that high levels of CLA are associated with a lower risk of heart failure[72].  

Association of Linolenic acid with CKD has been a controversial topic. Although, the 

underlying outcomes were discovered only in mice, recent research on patients proposes that 

CLA would act to lessen adiposity through tempering properties in the lipid metabolism. 
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Conjugated linoleic acid (CLA), has been shown to have other benefits for the kidneys as 

well[73]. 

CLA is also known to reduce renal production of PGE2, demonstrating a reduction in the 

inflammation and fibrosis associated with the progression of renal disease [74]. PGE2 leads to 

a natriuretic effect during increases in renal blood flow [75]. 

Experiments done with CLA in rats with polycystic kidney disease have shown a 

significant reduction in Parathyroid hormone (PTH) compared to the control group [76]. PTH 

elevation in patients with advanced renal diseases is very common and avoiding surgical 

removal of the thyroid gland by modulating the dietary contents would significantly benefit 

renal patients. 

Be that as it may, questions regarding the mechanisms of action of CLA in adipocytes are 

yet to be answered. 

 

CKD and Soy 

During the first 50 years of the 20th century, the scientific focus was on the identification of 

essential elements, particularly vitamins, and their role in the prevention of various dietary 

deficiency diseases[77,78]. This emphasis on nutrient deficiencies or “under nourishment” 

shifted dramatically, during the 1970s when diseases linked to excess and “over nutrition” 

became a major public health concern[79-81]. This change was more prominent in developing 

countries such as India and China[81,82]. 

A very low-protein diet is beneficial with CKD, however, too much protein would place 

undue stress on the kidneys, the possible effects of which include renal calcification, inhibited 

mineral absorption, and excessive levels of toxic minerals[83,84]. Although proteins are an 

important nutrient required for the body, it is necessary that the CKD patients on a low protein 

diet consume proteins in a form that produces the least waste and is readily available to the 

body without excess protein load on kidneys[84-88].  

Some evidence has shown that modifications to the amount and the types of dietary 

protein, exert a major effect on renal failure thereby limiting dietary protein[89]. Substituting 

animal protein with soy protein has been suggested to be effective including genetic kidney 

disease such as polycystic kidney disease[90]. However, there is a lack of clear guidelines 

based on the scientific evidence, especially in humans. 

Soy protein has been claimed to have higher Protein Digestibility Corrected Amino Acid 

Scores (PDCAAS)[91]. But in spite of the high PDCAAS score, studies have shown that soy 

protein does not help in the protection of renal function[92]. Thus, this is another controversy 

in the field and the patients with CKD doesn’t have a clear answer in terms of diet management.  

Soy protein contains a unique amino acid profile that is different from animal and soy 

peptides, it includes 4 to 20 amino acids, which may have favorable effects on high blood 

pressure and hyperlipidemia; thus, soy peptides may be effective in renal function by 

decreasing proteinuria and associated symptoms [93-97]. 

Although the effect of soy protein has been well studied in animal models including rats, 

this statement does not hold true for humans due to lack of available data in human subjects as 

studied by (Trujillo et. al., 2005)[98] and (Aukema and Housini, 2001)[99]. Reports suggest 

that rodents and non-human primates, metabolize isoflavones very differently than 

humans[100]  Effect of soy protein in breast cancer was studied in rats and humans and the 

results suggested that metabolism of soy isoflavones are different in these two species[101]. A 

comparative study examining the effect of isoflavones suggests confirms that metabolic 

phenotypes of isoflavones differ among female monkeys, pigs, rats and women [102]. 

A component of soy that has a reno-protective effect, are the isoflavones [97]. The 

mechanisms of isoflavones are however not very well known. One of the possibilities for the 

mechanism of action is by hydrolyzing isoflavones using bacterial β-glucosidases and 

changing the bioactive compound: genistein and daidzein in the intestine [103]. 

Based on the research advances done during past decades, there are 2 schools of thought 

on the dietary consumption of soy and its effect on renal health. A recent study conducted in 
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humans (boys aged 12-14 years) suggests that in addition to inhibiting the digestion of protein, 

soy plays an important role in reducing the absorption of certain minerals. Phytic acid 

(phytates) in soy may inhibit calcium absorption as well as the absorption of zinc and iron 

[104]. 

In contrast, the reduction of calcium absorption is particularly worrisome since CKD 

patients are at a higher risk of osteoporosis than the healthy population. The high phytic acid 

of soy may negate any potential benefits. In another study, phytic acid is shown to induce 

calcifications in renal papillae in a dose-dependent manner in animal models[29]. High soy 

diet is excessive in minerals including phosphorus, potassium, albumin and manganese. Excess 

consumption of phosphorus and potassium with CKD are particularly dangerous with advanced 

stage renal disease as the kidney isn’t equipped in filtering and excreting these minerals and 

these minerals build up in blood[30]. 

Inadequate excretion of albumin can cause albumin toxicity to the tubular and other cells 

of kidneys, which can lead to dialysis encephalopathy in renal patients. This leads some experts 

to advise people with kidney disease to consult a renal dietician before including soy in the 

diet. 

To study the effects of soy protein on renal function, Ahmed et. al., evaluated “The effect 

of soy protein on proteinuria and dyslipidemia, in patients with proteinuria glomerulopathy”. 

The results suggest that there is no beneficial effect when using soy protein instead of animal 

protein[92].                                                                                                                 

However, in another study conducted by Zhang et. al., revealed soy protein ingestion 

compared with animal protein feeding significantly decrease serum creatinine and serum 

phosphorus concentrations in pre-dialysis patients. There were no significant alterations in 

triglycerides (TG) and Ca levels but TG concentrations were lower [97]. Based on studies 

involving mice and patients with CKD it has been made summarize that soy protein is a 

valuable substitute for animal protein[105].  

Jing et. al., indicated that soy was related to a significant reduction of proteinuria, serum 

creatinine, C-reactive protein (CRP) and serum phosphorus in the pre-dialysis subgroup, 

however, serum phosphorus and CRP did not change in the dialysis subgroup[106]. In the soy-

treated group, blood urea nitrogen (BUN) was significantly reduced compared with control 

when two subgroups were analyzed as a whole[106-108]. Thus, this study suggests that soy 

protein diet restores the kidney function.  

Some claim that the discrepancy in the study pertaining to effect of soy in renal disease 

could be due to evaluating the scenario with an inadequate marker like serum creatinine, which 

is dependent on various factors like age, gender, diet and muscle mass in humans[109]. Thus, 

the study done with the recent novel biomarkers for detecting injury of different cell types is 

needed. 

The amount of soy protein consumed can also be a variable factor for determining the 

effects. For future evaluations, a study group with low and high soy protein should be evaluated 

with control groups in order to understand the mechanisms of action and effects of soy protein. 

Use of a significant renal marker like KIM-1[110,111], NGAL[112,113] or cystatin C[114-

116] in combination with other novel biomarkers[117], which determines the effect on kidney 

function more accurately should be taken into consideration[118,119]. 

 

CKD and Vitamin B 

The typical renal failure diet is low in B-vitamins. Virtually all un-supplemented “pre-dialysis” 

and dialysis patients develop pyridoxine (B6) deficiency (exacerbated by high-flux HD), 

Cyanocobalamin (B12) deficiency (protein bound-deficiency not common in dialysis) and Folic 

acid deficiency can occur in un-supplemented CKD patients.  

Healthy kidneys produce a hormone called Erythropoietin (EPO). EPO signals the bone 

marrow to make red blood cells, which then carry oxygen throughout the body. When the 

kidneys are diseased or damaged, the kidney cells express significantly less amount of 

EPO[120-122]. As a result, the bone marrow makes fewer red blood cells, which leads 
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to anemia. Other common causes of anemia in people with kidney disease include blood loss 

from hemodialysis and low levels of vitamin B12 and folic acid from their diet. 

It is also pertinent to mention that there is ongoing research being conducted on the pros 

and cons of vitamin therapy for patients with CKD. Various studies are also being conducted 

on the suppression of hyper-homocysteinemia and prevention of cardiovascular disease[123].  

Switching to a diet based on animal products increases the availability of vitamin B and 

vitamin K especially for patients with kidney disease. A study conducted by Amini et. al., on 

the advantages of supplementing Vitamin B12 to end stage renal disease patients showed that 

injection rather than an oral dosage of vitamin B12 was more efficient especially when 

combined with folate is accompanied by a decrease in homocysteine levels[124]. Elevated 

levels of homocysteine are associated with increased levels of cardiovascular inflammation. A 

low level of B12 has also been associated with albuminuria [125]. 

 

CKD and L-Carnitine 

L-carnitine is a derivative of the amino acid, lysine. The name L-Carnitine is derived from the 

fact that it was first isolated from meat.  It is a conditionally essential nutrient obtained both 

from diet and endogenous production in the body. Impaired intra-renal synthesis of L-carnitine 

or its reabsorption by tubular cells of CKD patients can lead to carnitine deficiency[126]. It has 

also been termed as vitamin BT. 

  

Table 2: The levels of intake of CLA by 10 different leading suppliers. Based on these levels, 

an average intake of 2060 mg is calculated. 
 

Brand CLA (mg) 

GNC 2000 

Olympian Labs 3000 

Now Foods 1600 

Natrol 2400 

Med-Rx 2000 

Barlean’s 3000 

Solgar 2600 

County life 2000 

Vita Essentials 1000 

Arazo Nutrients  1000 

 

Renal reabsorption of L-carnitine is normally very efficient and therefore, carnitine 

excretion by the kidney is normally very low. Malfunction of the kidney consequently results 

in increased urinary losses of carnitine[127,128]. Carnitine depletion may lead to a number of 

conditions observed in dialysis patients, including, plasma lipid abnormalities, muscle 

weakness and, fatigue and refractory anemia. 

The National Kidney Foundation (NKF) does not recommend routine administration of L-

carnitine to all dialysis patients. However, the NKF and other consensus groups suggest a trial 

of L-carnitine for hemodialysis patients with selected symptoms that do not respond to standard 

therapy. Those symptoms include cardiomyopathy, persistent muscle cramps, skeletal muscle 

weakness or myopathy,  hypotension (low blood pressure) during dialysis, severe fatigue, and 

anemia that requires administration of erythropoietin (EPO)[129]. We investigated 10 leading 

brands of L-Carnitine available in the market and found that the supplement dose is ranging 

https://lpi.oregonstate.edu/mic/glossary#amino-acid
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from 1600 mg/day to 3000 mg/day. The mean dose calculated on these 10 brands is 2060 

mg/day as shown in Table 2. 

 

Table 3. Summary of the functional food components, its sources and its known targets from 

different research studies. 

       Sl. No. 
Functional 

food 
Main sources Mechanisms of action/targets 

1 

Conjugated 

Linolenic 

Acid 

Flaxseeds and flaxseed oil, 

canola (rapeseed) oil, 

Soybeans and soybean oil 

Pumpkin seeds and pumpkin seed oil, 

perilla seed oil, tofu, walnuts and its oil. 

Reduce production of PGE2 by kidney[74]. 

Reduction in the inflammation and fibrosis associated 

with the progression of renal disease[74]. 

Reduction in the level of Parathyroid Hormone and hence 

prevents surgical removal of thyroid gland in patients with 

CKD[76]. 

2 Soy 

Edamame, meat alternatives, miso sauce, 

soymilk, soy nuts, soy sauce (tamari, 

shoyu and teriyaki), tempeh, textured soy 

protein. 

Favorable effects on high BP and hyperlipidemia[93-96]. 

Isoflavones a component of soy has a protective effect on 

kidney[97]. 

Mixed opinions on consumption of soy with regards to 

calcification levels and effect on CKD patients. 

Improves SCr and serum phosphorus concentrations in 

pre-dialysis patients[93-96]. 

Reduces proteinuria, SCr, C-reactive protein (CRP) and 

serum phosphorus in the pre-dialysis patients[93-96]. 

3 Vitamin B 

 

B1 (Thiamine): Brown rice, veggies, fruits, 

seafood, sunflower seeds, whole grains. 

B2 (Riboflavin): Salmon, broccoli, 

spinach, eggs, almonds, meat. 

B3 (Niacin): Peanuts, liver, chicken, many 

fish, brown rice. 

B5 (Pantothenic acid): Liver, mushrooms, 

legumes, veggies, nuts, avocado. 

B6 (Pyridoxine): Trout, molasses, poultry, 

blueberries. 

B7 (Biotin): Egg yolk, organ meats, milk, 

barley, yeast royal jelly. 

B9 (Folic acid): Leafy greens, berries, 

citrus fruits, legumes, salmon, spinach, 

eggs. 

B12 (Cobalamin): Trout, liver, beef, eggs, 

salmon, milk, shellfish. 

Prevents albuminuria[131]. 

Inhibits anemia due to blood loss from hemodialysis[132]. 

Suppression of hyper-homocysteinemia and prevention of 

Cardiovascular disease[123]. 

4 L-Carnitine 

Beef, milk, codfish, chicken breast, ice 

cream, cheddar cheese, whole wheat 

bread, asparagus. 

Reduces muscle weaknesses and fatigue. 

Reduces plasma lipid abnormalities[133]. 

Reduces anemia. 

Increases production of EPO[134]. 
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CONCLUSIONS 

There is mounting evidence that functional foods may enhance health, but the field of 

functional foods is still in a preliminary stage. Claims about the health benefits of functional 

foods must be based on sound scientific criteria [130]. Extensive research is necessary to 

substantiate the potential health benefits of those foods for which the diet-health relationships 

are not sufficiently scientifically validated. Research into functional foods will not advance 

public health unless the benefits of the foods are effectively communicated to the consumer. 

The need of the hour is to make nutrition health the point of focus and thereby eliminate 

the negative aspect of the renal diet. Though a lot of effort is on to educate and make people 

aware to select healthier food choices, better outreach through targeted campaigns and nutrition 

education for kidney health providers and patients is required. 

Thus, there is a need for a thorough investigation of the functional food and its active 

ingredients for the betterment of patients with CKD and its associated complications. 
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