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ABSTRACT  

Background: Royal jelly (RJ) is one of the most effectual and beneficial remedies for human 

beings and currently utilized in many sectors, ranging from the pharmaceutical and food industries 

to cosmetic and manufacturing sectors due to RJ possessing many bio-therapeutical activities 

including anti-tumor, antimicrobial and antioxidant activities, vasodilative and hypotensive 

activities, as well as growth-stimulating, infection-preventing, anti-hypercholesterolemic and anti-

inflammatory activities. However, some reports showing direct consumption of RJ can lead to 

severe allergic reaction and has been linked with acute asthma, dermatitis, and life-threatening 

anaphylaxis. Thus, this research purposes to explore the potential anti-inflammatory and anti-

allergic activities of hydrolyzed RJ as a function of enzyme and the extent of hydrolysis.  

 

Methods: RJ was enzymatically hydrolyzed with three commercial enzymes (Alcalase, 

Flavourzyme and Protamex). Anti-inflammatory activity of the hydrolysates was measured by 

their inhibitory effect on nitric oxide (NO) production of lipopolysaccharide (LPS)-stimulated 

RAW264.7 macrophage cells. Anti-allergy was determined from the ability of the hydrolysates to 

inhibit -hexsosaminidase (-HEX) release from RBL-2H3 mast cells. Cytotoxicity was also 

investigated in both RAW264.7 macrophage cells and RBL-2H3 mast cells. 
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Results: The electrophoretic profiles indicated that Alcalase and Flavourzyme hydrolysates 

did not show the presence of proteins causing allergic reaction after 60 mins of hydrolysis while 

these allergens disappeared from Protamex hydrolysate at the hydrolysis time of 240 min. It was 

observed that hydrolyzed RJ showed no toxicity on RAW264.7 and RBL-2H3 cells. With the 

progression of hydrolysis, IC50 values of NO production inhibition significantly decreased while 

degree of hydrolysis (DH) was increased in all hydrolyzed samples (p < 0.05). Results of -HEX 

release inhibition were found in the same fashion. Flavourzyme hydrolysate at the 240 min time 

point effectively mitigated the oxidative stress and protected DNA in a dose dependent manner. 

 

Conclusions: RJ hydrolysates from Flavourzyme resulted in peptides with anti-inflammatory 

activity as determined by the inhibition of NO production in LPS-stimulated RAW264.7 

macrophage cells and anti-allergic property as measured by the suppression of degranulation of 

sensitized RBL-2H3 cells. Anti-inflammatory effect may be due to their anti-oxidative capability. 

Inhibition of -HEX release may be due to their membrane-stabilizing effects or/and blockade of 

IgE antibody binding to its receptors. 

 

Keywords: anti-inflammation, enzymatic hydrolysate, royal jelly, anti-allergy 

 

INTRODUCTION 

Recently, the popularity of functional foods is increasing because of rising health-conscious 

consumers. The market for functional foods is increasing at an annual rate of 15–20% [1]. 

Functional foods offer new options for people in prevention and treatment of health concerns 

because they are defined as foods or dietary components with health-enhancing properties beyond 

basic nutrition [2]. Among foods that possess potential health benefits, royal jelly (RJ) is one of 

the most attractive natural products, which is originated from beehives. RJ is a thick, white-

yellowish, creamy substance secreted from the hypopharyngeal and mandibular glands of young 

worker bees (Apis mellifera) for nutrition of all bee larvae and queen bees. Bee larvae consume RJ 

during their first 3 days of their life while queen bees continue to consume RJ for their whole life 

period [3, 4]. It is suggested that RJ is a potent promoter of healthy aging and longevity because it 

enhances overall health and fertility of queen bees, who may lay up to 3000 eggs a day and survive 

as long as five years compared with infertile workers that live up to 45 days only [4-6]. The 

scientific evidence has found that RJ has many bio-therapeutical activities including anti-tumor, 

antimicrobial and antioxidant activities, vasodilative and hypotensive activities, as well as growth-

stimulating, infection-preventing, anti-hypercholesterolemic and anti-inflammatory activities [7-

10, 51]. This is the reason that RJ is one of the most effectual and beneficial remedies for human 

beings and currently utilized in many sectors, ranging from the pharmaceutical and food industries 

to cosmetic and manufacturing sectors [11].  

The search for new anti-inflammatory and anti-allergic agents from a huge array of natural 

resources is intensifying [12]. Inflammation is a complex process involving the activation and 

deactivation of immune cells. As a defense mechanism, inflammation is vital to health. However, 

dysregulation of inflammation could result in cellular and tissue damage causing chronic diseases 

such as diabetes, Alzheimer’s disease, atherosclerosis, septic shock, and cancer [13-15]. Studies 

of the mechanisms that underlie the inflammatory processes have increased considerably in recent 

decades. It is now well known that the inflammatory processes are associated with activation of 
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various immune-system cells and numerous inflammatory mediators [16]. Macrophages are one 

of the key immune cells involved in initiating and maintaining the inflammatory response. Nitric 

oxide (NO) has been definitively recognized as one of the key inflammatory mediators involved 

in immunity and inflammation. NO is derived from the oxidation of L‐arginine catalyzed by 

inducible NO synthase (iNOS) [17]. In parallel, the allergic process has an important inflammatory 

component in which mast cell activation and degranulation are the first phenomena observed. 

During this process, mast cells release several inflammatory mediators including histamine (5-

HT), platelet aggregating factor (PAF), leukotrienes, and a variety of cytokines [18]. In type I 

hypersensitivity allergic reaction, the release of these inflammatory mediators is IgE mediated 

[19]. In addition, -hexosaminidase (-HEX) is also stored in the secretory granules of mast cells 

and released along with histamine when mast cells are activated. Therefore, this enzyme is 

commonly used as a marker for mast cell degranulation and detection of anti-allergic activity. 

There are several reports showing that direct consumption of royal jelly can lead to severe 

allergic reaction and has been linked with acute asthma, dermatitis, and life-threatening 

anaphylaxis [20-22]. RJ contains a family of proteins called major royal jelly proteins (MRJs), 

which have been identified as allergens [52]. However, another study reported two different 

proteins with the molecular weight of 47 kDa and 55 kDa as major allergens [23, 53]. Nonetheless, 

many studies have been conducted to solve allergic problems caused by RJ consumption [24-25]. 

Hydrolyzed proteins have been suggested to be used to manage adverse food allergic reaction in 

human and pets [26]. This relies on the assumption that enzymatic treatment can modify the 

structure of allergens or redistribute the composition by creating a wide range of peptides with a 

small size so that they are not recognized as antigen, therefore, rendering non- or hypo-allergic 

properties [26]. Indeed, a variety of food protein hydrolysates have been shown to modulate the 

inflammatory response with anti-inflammatory and anti-allergic activities [27]. In this study, the 

anti-inflammatory and anti-allergic effects of RJ-derived proteins and their enzymatic hydrolysates 

were investigated as a function of enzyme and the extent of hydrolysis in mammalian cell lines. 

 

MATERIALS AND METHOD 

Materials 

Three batches of pure fresh royal jelly (RJ) from the honeybee species Apis mellifera were acquired 

directly from beekeepers. The farms were located in Northern Thailand. RJ was transferred by a 

refrigerated truck and then kept in frozen (-20C). The storage period of samples used in this study 

was not more than six months.  

 

Chemical and Reagents 

Alcalase 2.4L (2.4 AU/kg; density, 1.18 g/ml), an endoproteinase from Bacillus licheniformis, 

Flavourzyme (1000 LAPU/kg; density, 1.27 g/ml), an exoproteinase from Aspergillus oryzae, 

and Protamex, a mixture of endo- and exo-peptidases from Bacillus sp. were obtained from 

Sigma-Aldrich (St. Louis, MO, USA). Minimum essential medium eagle (MEM), anti-DNP IgE 

(Monoclonal Anti-DNP), lipopolysaccharide (LPS, Escherichia coli), RPMI-1640 medium, 3-

(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT), and l-nitroarginine (l-

NA) were purchased from Sigma. Fetal calf serum (FCS) was from Gibco. All chemicals used in 

the experiments were of analytical grade. 
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Cell culture 

Anti-inflammatory activity was determined by the inhibitory ability of RJ hydrolysates against NO 

production in LPS-stimulated murine RAW264.7 macrophage cells. Anti-allergic activity was 

determined by the inhibitory ability of RJ hydrolysates against -hexosaminidase (--HEX) 

secretion using the rat mast cell line RBL-2H3. Both cell lines were purchased from American 

Type Culture Collection (ATCC). The RAW264.7 cells were cultured in RPMI-1640 medium 

supplemented with 0.1% sodium bicarbonate and 2 mM glutamine, penicillin G (100 units/ml), 

streptomycin (100 g/ml), and 10% FCS. The RBL-2H3 cells were cultured in MEM containing 

penicillin (100 units/ml), streptomycin (100 units/ml), and 15% FCS. The cells were incubated at 

37°C in 5% CO2/air. 

 

Royal jelly hydrolysate Preparation 

Royal jelly was hydrolyzed by three different enzymes: Alcalase, Flavourzyme, and Protamax. 

The optimum conditions used for hydrolysis were based on the recommended conditions from the 

supplier. The RJ samples were mixed with deionized water at a ratio of 1:2. The reaction was 

performed in a closed glass vessel with a double jacket and constant agitation at 200 rpm until the 

temperature reached to the optimum hydrolysis temperature. Then, the protease was added at a 

level of 1.0% (w/w). Temperature was stabilized with a continuous flow water bath. The hydrolysis 

was carried out for six hours. Aliquots were taken at 0, 60, 120, 180, 240, 300 and 360 min. The 

reaction was terminated by heating at 85oC for 15 mins before cooling on ice. The hydrolysate was 

then centrifuged at 10,000 x g at 4oC for 15 mins. The soluble fraction was collected and kept at -

20oC for further analysis. 

 

Determination of total protein content 

Protein content was measured according to the Lowry method [28] using bovine serum albumin 

(BSA) as a standard. 

 

Degree of hydrolysis analysis  

Degree of hydrolysis (DH) is defined as the ratio between the number of peptide bonds cleaved 

during hydrolysis reaction and total peptide bonds in raw material. DH of royal jelly hydrolysates 

was determined by measuring the amount of free amino acids according to the reaction with 

Trinitobenzene sulfonic acid (TNBS) [29]. The absorbance was read at 420 nm and α-amino group 

was expressed in terms of L-leucine. 

 

SDS-PAGE and Coomassie blue staining 

Hydrolyzed samples from different treatments were analyzed by SDS-PAGE [30] using a Bio-Rad 

Mini-Protean Tetra Cell system (Bio-Rad, Hercules, CA, USA) in the buffer and gel system 

proposed by Schagger and Jagow [31]. The separation was carried out using 4% stacking and 16% 

resolving gels at a voltage of 50 V. The samples (2 mg/mL) were heated in the reducing buffer 

(62.5 mM Tris-HCl, pH 6.8, 2.0% (w/v) SDS, 0.002% (w/v) bromophenol blue, 5% (v/v) β-

mercaptoethanol, and 10% (v/v) glycerol) at 100oC for 5 mins prior to analysis. A total of 0.2 µg 

of the sample was loaded per well. Protein bands were stained with Coomassie Brilliant Blue R-

250. 
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Cell viability assay 

A cell viability assay was performed with both RAW264.7 and RBL-2H3 cells using the MTT 

colorimetric method according to previously described [26]. Briefly, after 48 h incubation with the 

test samples, MTT solution (10 l, 5 mg/ml in PBS) was added to the wells. After 4 h incubation, 

the medium was removed and DMSO was then added to dissolve the formazan production in the 

cells. The optical density of the formazan solution was measured with a microplate reader at 570 

nm. The test samples were considered cytotoxic when the optical density of the sample-treated 

group was less than 80% of that in the control (vehicle-treated) group [19].  

 

DNA damage protection assay 

The ability of RJ hydrolysates to protect DNA from Fenton’s reagent-induced damage was 

assessed by DNA damage protection assay with slight modifications [32]. Genomic DNA was 

isolated from HEK-293 cells. The reaction mixture was made by mixing 0.2 µg of DNA, 3 µL of 

50 mM phosphate buffer (pH 7.4), and 3 µL of 40 mM FeSO4, followed by addition of 5 µL 

samples (0.5, 1.0, 2.0 or 5.0 mg/ml) and 4 µL of 1 mM H2O2. The reaction mixture was then 

incubated for 30 mins at 37oC. After that, 5 µL of 1 mmole/L gallic acid was added immediately 

to terminate the reaction. Finally, the DNA was visualized with 1% agarose gel electrophoresis.  

 

Determination of anti-inflammatory activity 

Anti-inflammatory activity of samples was evaluated based upon their inhibitory effect on nitric 

oxide (NO) production in murine RAW264.7 macrophage cells according to the procedure 

described earlier [26]. The l-NA (NO synthase inhibitor) was used as positive control. The stock 

solution of each test sample was dissolved in deionized distilled water. Inhibition (%) was 

calculated using the following equation and IC50 values were determined graphically (n = 4): 
 

Inhibition (%) = (A – B) × 100 

                (A – C) 

where A is NO concentration (g/ml) with LPS and without sample; B, with LPS and sample; 

C, without LPS and sample. 

 

Determination of anti-allergic activity 

The anti-allergic activity of samples was evaluated based upon their inhibitory effect on the release 

of -HEX from RBL-2H3 cells according to the method described by Chansuwan and Chinachoti 

[26]. The test samples were dissolved in deionized distills water, and the solutions were added to 

Siraganian buffer. Inhibition (%) of the release of -HEX by the test sample was calculated using 

the following equation and IC50 values were determined graphically (n = 4): 
 

Inhibition (%) =     1 – (T - B – N)         100 

                                     C - N 
 

where C is control with DNP-BSA and without sample; T, test with DNP-BSA and sample; 

B, blank without DNP-BSA and sample; N, normal without DNP-BSA and sample. 
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Statistical Analysis 

Data were subjected to Analysis of Variance (ANOVA) and Duncan’s Multiple Range Test. The 

SPSS statistics program (Version 16.0) was used for data analysis. Statistical significance was 

tested at p <0.05. 

 

RESULTS AND DISCUSSION 

Degree of hydrolysis (DH) 

DH is an indicator of hydrolysis progress which reflects the ability of proteases to access available 

cutting sites of protein. DH is defined as the proportion of peptides bond cleaved during proteolysis 

to the total peptide bond available in the protein structure. The results revealed that Alcalase 

hydrolysates had the highest DH of 33.6%, followed by Flavourzyme hydrolysates 27.4% and 

Protamex 18.3% after 6 hours of hydrolysis (Figure 1). Protamex hydrolysates showed 

significantly the lowest DH with p < 0.05. All proteolysis curves showed that royal jelly was 

degradable by all three proteases, and the differences between their DH values implied that the 

number of available cutting sites for Alcalase was the largest. Additionally, the results also 

showed the DH values increased with the hydrolysis time, which was in agreement with the results 

of other protein hydrolysates previously reported [26, 33]. 

    

 

 

   

Figure 1. Relationships between hydrolysis time and DH of three proteases.  
 

Molecular weight distribution of hydrolysis-derived peptides  

Gel electrophoresis was employed to observe the size distribution of the hydrolyzed proteins and 

estimate their molecular masses. The electrophoretic patterns of RJ hydrolyzed by Alcalase, 

Flavourzyme, and Protamex are shown in Figure 2. The resulting hydrolysates comprised a 

mixture of peptides of different lengths. Alcalase rapidly cleaved RJ into peptides, while 

Protamex showed the slowest hydrolysis rate (Figure 2A). Flavourzyme hydrolysis resulted in 

relatively larger fragments that were stable over the entire hydrolysis (Figure 2B). However, 

Alcalase hydrolysis resulted in very small fragments even only after 60 mins of cleavage. 

Protamex showed the least amount of cleavage with larger fragments (Figure 2C).  
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Alcalase is an endopeptidase that has a limited range of peptide-bond specificities for 

hydrolysis. On the other hand, Flavourzyme and Protamex are mixtures of endopeptidases and 

exopeptidases, giving them a broader range of actions; thus, a higher DH is expected when 

compared with hydrolysis by Alcalase [34]. However, the limited hydrolysis (lower DH) and 

presence of both high and low molecular weight bands in the electrophoretic profiles (Figure 1 and 

2) could indicate that the effectiveness of Flavourzyme and Protamex towards RJ proteins was 

largely limited to their exopeptidase activity [35]. Nonetheless, treatment with Alcalase, 

Flavourzyme, or Protamex all resulted in the prominent change in the SDS-PAGE profiles 

(Figure 2), showing the extensive hydrolysis of two RJ allergens (MW: 47 and 55 kDa) [23]. 

Alcalase and Flavourzyme hydrolysates showed the disappearance of these two allergens after 

60 mins of hydrolysis, while they were absent from Protamex hydrolysate at the hydrolysis time 

of 240 min (Figure 2). Thus, this finding indicated that these allergy-causing proteins could be 

efficiently removed by proteolytic treatment, therefore rendering non- or hypo-allergic properties. 
 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Figure 2 SDS-PAGE electrophoretic profiles of time-course RJ hydrolysis by (A) Alcalase, (B) 

Flavourzyme, and (C) Protamex 

A 
 1        2      3      4        5       6       7        8        

B 
 1        2       3       4       5       6      7       8        9 

C 

 1        2        3        4       5       6       7        8        
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Anti-inflammatory activity 

Macrophages are activated in response to invading microorganisms and foreign antigens to 

produce NO [36]. However, excessive production of NO by activated macrophages can cause 

oxidative stress and inflammation leading to general tissue damage and DNA mutation [26]. 

Therefore, tight regulation of NO production is essential to the immune system. Prior to evaluation 

of their inhibitory effect on NO production, we first used MTT assay to investigate the effect of 

RJ hydrolysates on macrophage cell viability. Various concentrations of hydrolyzed RJ (0-10 mg 

protein/ml) were tested, and the results indicated that the cell viability of all hydrolysate-treated 

macrophages was over 80% compared to the control [26] implying that these hydrolyzed samples 

had no cytotoxicity (data not shown). Therefore, the concentrations of 0-10 mg protein/ml RJ and 

its hydrolysates were used throughout the study to assess their potential anti-inflammatory activity 

in RAW264.7 macrophage cells. 

Investigating the inhibition of NO production in macrophages is fundamentally important 

because targeting LPS-induced NO production may stand a good chance of effectively preventing 

inflammatory reactions and diseases [37]. Enzymatic hydrolysates of RJ were prepared and their 

NO production inhibitory activity was investigated in LPS-stimulated RAW264.7 cells. The cells 

were treated with different concentrations of hydrolyzed RJ samples followed by LPS stimulation. 

After 24 h incubation, NO production in the culture medium was quantified using Griess reagent. 

The results showed that the half maximal inhibitory concentrations (IC50) significantly decreased 

in all hydrolysate treatments, which were correlated with the increased  DHs and  progression of 

hydrolysis (p < 0.05) (Figure 3). Their IC50 values decreased by about 4-folds compared to the 

non-hydrolyzed controls after 60 mins of hydrolysis and by about 8-folds to the asymptotic level 

at 360 min of hydrolysis. This result suggested that the small sizes of peptides exhibited stronger 

anti- inflammatory activity than larger peptides. The higher DH might have rendered a larger 

portion of low MW peptides, allowing for more effective penetration into the lipid bilayer of cells. 

This result was in accordance with previous studies indicating that the smaller sizes of peptides 

derived from food proteins such as salmon [38], soybean [39], egg [40], and whey [41] possessed 

a stronger NO inhibitory activity than higher ones in LPS-stimulated RAW264.7 macrophages. 

Additionally, hydrolyzed RJ was previously shown to possess anti-inflammatory activity through 

reduction of pro-inflammatory cytokines such as TNF-, IL-1, IL-6, IL-10, IL-12, and IFN- in 

mice [42].  

Other factors, such as the peptide sequences and amino acid compositions can also determine 

the bioactivity of protein hydrolysates. It has been shown that electron donation by the sulfhydryl 

group of cysteines leading to dimerization of hydrolyzed peptides contributed to the anti-

inflammatory activity, although this mechanism would be more relevant in free radical quenching 

than ROS scavenging [43]. Thus, the structure-function relationships of anti-oxidative and anti-

inflammatory peptides and protein hydrolysates appear to be very complex, especially within the 

physiological matrices. The lowest IC50 value observed for Flavouzyme hydrolysate was 

0.150.03 mg-protein/ml at 240 min of hydrolysis (Figure 2B).  However, this IC50 value was 

higher than L- nitroarginine (20.441.84 g/ ml), which is known to be the most specific NO 

synthase inhibitor.  
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Figure 3 Hydrolysis-time dependent inhibitory analysis of NO production using hydrolyzed RJ. 

(A) Alcalase, (B) Flavourzyme, and (C) Protamex. IC50 was overlaid with degree of 

hydrolysis (DH). Letters depicted statistically significant differences at p< 0.05. 

 

DNA damage protecting activity 

The excessive production of reactive oxygen species (ROS) can cause a variety of degenerative 

disorders such as cancer, premature aging, cardiovascular disease, and neurodegenerative disease. 

DNA damage is a key step in these ROS-induced disorders [44]. To examine whether RJ 

hydrolysates have a DNA protective activity, DNA damage to a model genomic DNA from HEK-

293 cells was induced by the Fenton’s reaction in the presence of Flavourzyme hydrolysates. 

The hydroxyl radicals generated by the Fenton’s reaction are known to cause oxidative DNA 

damage. After incubation with the Fenton’s reagent, the genomic DNA band was disappearing and 

a smear of degraded DNAs was observed. The RJ hydrolysates effectively mitigated the oxidative 

stress and protected DNA in a dose dependent manner, as evidenced by the increasing intensity of 

genomic DNA bands (Figure 4, lane 3-6).  
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Lane 1 2 3 4 5 6 

Fenton’s reagent - + + + + + 
Flavourzyme hydrolysate 

at 240 min 

(g-protein/ml) 

- - 0.5 1.0 2.0 5.0 

 

Figure 4. Agarose gel electrophoretic analysis of oxidative DNA damage induced by the Fenton’s 

reaction on a genomic DNA in the presence and absence of 240-min Flavourzyme hydrolysates. 

Lane 1, DNA control; Lane 2, DNA with Fenton’s reagent; Lanes 3-6, DNA with Fenton’s reagent 

and a hydrolysate sample at concentration of 0.5, 1.0, 2.0 and 5.0 g-protein/ml respectively. 

 

RJ hydrolysate could protect DNA through scavenging the hydroxyl radicals by donating a 

hydrogen atom or electron. It has previously been proposed that RJ might exert beneficial effects 

through its antioxidant activity and play a central protective role against ROS-induced tissue 

damage [45]. It has also been shown that the unsaturated fatty acids (trans-10-hydroxy-2-decenoic 

acid and 10-hydroxydecenoic acid) from RJ contributed to its in vitro antioxidant effects. 

Therefore, it could be concluded that the antioxidant activities of hydrolyzed RJ could be related 

to the unsaturated fatty acids, phenolic compounds, and bioactive peptides containing hydrophobic 

and aromatic amino acids [46-47]. 

 

Anti-allergic activity 

Rat basophilic leukemia (RBL-2H3) cells are mucosal mast cells that have been used often for 

studying anti-allergic property in diverse areas of functional foods and medicines. Beta-

hexsosaminidase (-HEX) is stored in the secretory granules of RBL-2H3 cells and released along 

with histamine when the cells are immunologically activated. Hence, this enzyme is commonly 

used as a degranulation marker of mast cells and can reflect changes in other inflammatory factors 

[19]. For cell viability evaluation with MTT assay, RBL-2H3 cells were exposed to various 

concentrations of hydrolyzed RJ (0-10 mg-protein/ml). These hydrolysates showed minimal 

toxicity on RBL-2H3 cells as the percentages of cell viability were all over 80% (data not shown) 

[26]. Hence, RJ hydrolysates at those concentrations are safe for assessing anti-allergic activity in 

RBL-2H3 mast cells. 

To assess the ability of RJ and hydrolyzed RJ to inhibit degranulation, RBL-2H3 cells were 

primed with anti-DNP IgE antibody and then treated with RJ or RJ hydrolysates, followed by 

stimulation with DNP-BSA and measurement of  -HEX release. The results showed that the IC50 

values of hydrolyzed RJ were lower than non-hydrolyzed one for all proteases (Figure 5). This 

result was similar to previous works in which the enzymatic hydrolysis improved the biological 

properties of food proteins by production of the bioactive peptides that were encrypted within the 

parent proteins [33, 35, 38, and 42]. In addition, the IC50 of all hydrolyzed samples significantly 
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decreased (p<0.05) with increasing hydrolysis time, while DH showed an increase with the 

progression of hydrolysis. This decrease in IC50 was steep up to 240 min and then became more 

slowly thereafter (Figure 5). The strongest anti-allergic effect was found for 240-min 

Flavourzyme hydrolyzed RJ with the IC50 of 0.190.01 mg-protein/ml (Figure 5B). These results 

together indicated that the inhibitory activities of RJ hydrolysates can be affected by protease type 

and hydrolysis time. 

The ability of RJ hydrolysates to inhibit -HEX release might be due to hydrophobic and 

hydrophilic amino acid residues in the hydrolysates. Peptides with high contents of hydrophobic 

or hydrophilic amino acids may easily bind to the ε heavy chains of IgE at the antigen binding 

sites, causing the blockade of IgE binding to FcεRI on mast cells [48]. Subsequently, this would 

lead to a reduction in β‐HEX release. Amino acid compositions and peptide sequences also play 

important roles in anti‐allergic activity. Several reports showed that peptides obtained from various 

sources of protein hydrolysates with different sizes, residues and sequences affected the anti‐

allergic activity, such as the hydrolysates from egg white, soybean, or synthetic peptides [49-50]. 

Moreover, the physiochemical structures of peptides are also an important factor for the anti‐

allergic activity. It has been shown that peptides with a high content of α‐helical conformation at 

their C-terminus could enhance inhibition of both β‐HEX release and IgE-receptor interaction. 

Thus, our finding was in agreement with these previous studies regarding the possible anti-allergic 

roles of RJ-derived peptides. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Hydrolysis-time dependent inhibition of -HEX secretion by hydrolyzed RJ using (A) 

Alcalase, (B) Flavourzyme, and (C) Protamex. IC50 was overlaid with degree of hydrolysis 

(DH). Letters depicted statistically significant differences at p< 0.05. 
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CONCLUSION 

Royal jelly hydrolysates derived by hydrolysis using three commercial proteases (Alcalase, 

Flavourzyme, and Protamex) all possessed anti-inflammatory and anti-allergic effects without 

affecting the viability of macrophages and mast cells. Our results indicated that their ability to 

suppress NO production and -HEX release could be affected by protease type and hydrolysis 

time. Flavourzyme hydrolysates exhibited the greatest activity for both properties; the lowest 

IC50 for NO production and -HEX release inhibition was observed at 240 min with the value of 

0.150.03 and 0.190.01 mg-protein/ml, respectively. The anti-inflammatory effect could be 

linked to their anti-oxidative property and DNA damage protective activity. The inhibition of -

HEX release might be due to a membrane-stabilizing action or/and blockade of IgE-receptor 

interaction. Taken together, these results suggested that RJ hydrolysates could be further 

developed into functional foods and ingredients for anti-inflammatory and anti-allergic purposes. 

 

List of Abbreviations: RJ, royal jelly; NO, nitric oxide; iNOS, inducible NO synthase; PAF, 

platelet aggregating factor; -HEX, -hexosaminadase; MEM, minimum essential medium eagle; 

IgE, immunoglobulin E; LPS, lipopolyscacharide; MTT, 3-(4,5-dimethyl-2-thiazolyl)-2,5-

diphenyl-2H-tetrazolium bromide; TNF-, tumor necrosis factor-; IL-6, interleukin 6; IL-10; 

Interleukin 10; IL-12, Interleukin 12; IFN-, interferon gamma; l-NA, l-nitroarginine; FCS, fetal 

calf serum; ATCC, American Type Culture Collection; BSA, bovine serum albumin; DH, degree 

of hydrolysis; TNBS, trinitobenzene sulfonic acid; ROS, reactive oxygen species; DNA, 

deoxyibonucleic acid. 
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