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ABSTRACT: 

The traditional methods for mining foods for bioactive peptides are tedious and long. Similar 

to the drug industry, the length of time to identify and deliver a commercial health ingredient 

that reduces disease symptoms can take anything between 5 to 10 years. Reducing this time 

and effort is crucial in order to create new commercially viable products with clear and 

important health benefits. In the past few years, bioinformatics, the science that brings 

together fast computational biology, and efficient genome mining, is appearing as the long 

awaited solution to this problem. By quickly mining food genomes for characteristics of 

certain food therapeutic ingredients, researchers can potentially find new ones in a matter of a 

few weeks. Yet, surprisingly, very little success has been achieved so far using bioinformatics 

in mining for food bioactives. 

The absence of food specific bioinformatic mining tools, the slow integration of both 

experimental mining and bioinformatics, and the important difference between different 

experimental platforms are some of the reasons for the slow progress of bioinformatics in the 

field of functional food and more specifically in bioactive peptide discovery. 

In this paper I discuss some methods that could be easily translated, using a rational 

peptide bioinformatics design, to food bioactive peptide mining. I highlight the need for an 

integrated food peptide database. I also discuss how to better integrate experimental work 

with bioinformatics in order to improve the mining of food for bioactive peptides, therefore 

achieving a higher success rates. 

 

Keywords: bioactive peptides, bioinformatics, mining food, therapeutic properties, food 

proteins, functional food. 

 

 

INTRODUCTION: 

Food fermentation is used as a means to create food products with different or better taste, 

different functional properties, or with therapeutic qualities that otherwise are absent in the 

initial food. Human consumption of fermented food is an ancient practice however it is 



Functional Foods in Health and Disease 2012, 2(10):325-338                                                    Page 326 of 338 

 

estimated that it began with the creation of cheese over 8,000 years ago. One of the major 

changes that fermentation can bring to food is hydrolyzing the food-proteins into smaller 

fragments, known as peptides. Some of these peptides have been shown to have a relevant 

impact on human health. For example bioactive peptides from various food sources have 

been shown to lower blood pressure, broccoli, egg, milk, meat, wheat, soy, and fish . Some 

peptides found in milk are anti-microbial, a similar functionality is also found in egg . 

I have witnessed in the past decade a shift in public awareness towards how certain 

elements contained in food can enhance ones health and therefore reduce the need for 

artificial drugs. This has in turn alerted food companies to an attractive new market segment. 

This has meant that important research has been dedicated by the food industry to mining 

food with the aim of developing functional foods, such as products containing bioactive 

peptides. 

The traditional way of finding these bioactive peptides is a very long and a tedious 

process. Very often this process includes random digestion of food followed by experimental 

testing of hundreds of versions of a hydrolysate. But the most tedious part is then to 

determine the bioactive set of peptides that are presenting the activity within the active 

hydrolysates. The time and cost associated with this more traditional and purely experimental 

approach results in a small number of commercial products with bioactive ingredients. 

Indeed, less than 20 food-peptide based products are commercially available (see  for a 

detailed table about commercially available peptides), some of these include Calpis AMEEL 

S (Japan) and Calpico with a hypertensive effect. Davisco also created BioPURE-GMP, 

which is a peptide mixture with anticariogenic, antimicrobial and antithrombotic health 

benefits. Another example is the Glutamin peptide by DMV, which carries an 

immunomodulatory activity. 

Because of the above, more time, money and effort is being spent trying to detect novel 

bioactive elements in food. This shift has been accompanied with an expansion of 

nutraceutical and functional food research. The development of high throughput methods and 

techniques such as mass-spectrometry is resulting in tremendous amounts of data. Mass-

spectrometry has been used for example to investigate the types of peptides found in a 

hydrolysate. As a result of the slow experimental route, bioinformatics was introduced as the 

solution to quickly mine for bioactive peptides in food. Indeed this seems like an obvious 

idea given the dramatic scientific leap that bioinformatics allowed the drug industry to take 

over the last two decades.  

However, the emergence of bioinformatics in food research has not been 

straightforward and to date very few results have been delivered. There are many reasons to 

explain the slow success rate of bioinformatics in food bioactive peptide mining, but three 

major ones are worth mentioning. First, it is not straightforward to translate the tools 

developed in bioinformatics in the drugs industry to mining for bioactive peptides in food. 

The drug industry has very different pressure to that of the food industry. The role of 

pharmacy is to find new drugs whatever the cost and time. In contrast it is only recently that 

the food industry is realizing that functional bioactive food is the food of the future and may 

be worth the investment to deliver products for this market. However this is still not a 

necessity, but rather an adaptation to a growing market need and mainly a future requirement. 

So while drug companies have always walked in parallel with state of the art technology and 

science, this is not the case for the food industry that needs to not only catch up in food 

mining but in the related general science in this area. Secondly, most of the bioinformatic 
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tools used in drug discovery is based on drug docking of structurally defined molecules, 

while, most of the bioactive peptides are short and thus hard to identify a structure that they 

will adopt outside the full protein. This shows that new bioinformatics tools need to be 

developed to meet the special requirements of mining for food bioactives as opposed to just 

translating the drug mining tools. Finally, there is very slow integration of both, 

experimental, and the in-silico food mining research. While there is pressure in the drug 

industry to adopt consensus methods and have worldwide databases, it is not the case for the 

food industry, where many of the methods are very different from lab to lab, and thus hard to 

find a generic consensus or structure. This is shown by the absence of databases for bioactive 

peptides widely used by the food industry and academics. 

The purpose of this review is to provide a possible set of bioinformatic methods that 

could be used to aid food research and industry with bioactive peptide mining. Here again, 

because of the lack of literature on the trial and error of these methods it is hard to quantify 

their success rate. But I do explain how some would have been successful in detecting known 

bioactive peptides. The focus will also be to highlight the need for a worldwide database that 

food research can update and consult on a daily basis regarding food bioactive peptides. In 

particular I will discuss how computational biology can be integrated with experimental 

methods in the most efficient way to increase the yield of new bioactive peptides found in 

food. 

 

Techniques used to find bioactive peptides:  

I illustrate here different methods some of which have been successfully used to find new 

bioactive peptides. Most of these methods are bioinformatic based, or could be easily 

translated into systematic bioinformatic approach. Although most of these approaches were 

not used on food, they have great potential in finding new bioactive peptides in food. 

 

Method 1: Evolutionary conservation may play a key role in identifying new food bioactive 

peptides for some diseases 

Edwards and coauthors were interested in finding new bioactive peptides that showed a 

significant effect on human platelet function . This work represents a good example whereby 

the initial mining is performed using bioinformatics, which allowed the team to focus on a 

small number of candidates that are most likely carrying the activity of interest. The initial set 

of platelet expressed candidate proteins they had was 2900. It would have been very costly 

and lengthy to test regions of all 2900 proteins. Besides, a random selection of some proteins, 

followed by a random selection of peptides, is very unlikely to yield results. Instead, the 

authors applied a rational peptide design approach specifically targeted at juxtamembrane 

regions that were predicted to have signaling activity and could be modulators of platelet 

function. To narrow down the space of search to candidates most likely carrying the desired 

functionally the authors used bioinformatics to identify 47 candidates highly expressed trans-

membrane proteins with signatures of functionally specific residues in cytoplasmic tails or 

loops . They carried out this using an evolutionary approach whereby the chosen 

peptides span residues that are strongly similar (conserved) to those in the corresponding 

proteins in other species (orthologs), but that differ from those in related human proteins 

(paralogs) . An example is illustrated in Figure 1-A using a milk protein example. The 

authors reasoned that because the functionality of platelet aggregation is crucial to the cell, 

the regions that support and perform this function should be conserved but will not be present 
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in a related protein that has a different function in that region. The peptides also had to lie 

within 30 amino acids of the membrane and meet certain synthesis and solubility criteria .  

This computational approach allowed the experimental biologist to test candidates that 

most likely carry this functionality rather than random candidates. The results showed that 26 

peptides have significant effect on platelet function . This significant finding would not have 

been possible without the initial bioinformatic screening. 

 

Method 2: Amino-acid composition and preference can define some diseases allowing for 

the discovery of new food bioactive peptides 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Often bioactive peptides perform a given function because of their structure and amino acid 

composition. Figure 1-B is an illustration of an example where patterns of amino acids are 

established based on amino acid preferences at certain positions for a number of peptides all 

carrying a similar functionality. For example Jianping Wu et coauthors carried out an 

interesting study to examine the quantitative structure−activity relationships of angiotensin I-

converting enzyme (ACE) inhibitory peptides. These peptides have a blood pressure lowering 

effect, and are thus interesting for the cardiovascular functional food community. Using a 

computational approach partial least squares regression they found that di-peptides carrying 

an ACE inhibitory function preferred residues with bulky side chains as well as hydrophobic 

 

Figure 1. Representation of three different methods used to find new bioactive peptides. 

A. Alignment of the region 128-143 of bovine -S1-casein between related species. The blue 

box surrounds the region that is conserved relatively to the surrounding region in the protein. 

B. Mimicking a region of interaction between two proteins, the new peptides can inhibit the 

interaction of both proteins. C. Example of amino acid preference underlining the 

functionality of a set of peptides shown to reduce a given disease.  For the figure purpose I 

chose to only show 4 peptides, numerous other peptides are represented by dots.  
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side chains. For tri-peptides, the most favorable residues for the carboxyl terminus were 

aromatic amino acids, positively charged amino acids were preferred for the middle position, 

and hydrophobic amino acids were preferred for the amino terminus. These patterns allowed 

the authors to mine for peptides that carry similar structures. They mined pea, bovine milk, 

and soybean proteins and predicted 7 new biaoctive peptides (3 di-peptides, and 4 try-

peptides) that are likely carrying an ACE-inhibition effect.  

 

Method 3: Mimicking a Binding Partner to discover new bioactive peptides:  

In this paragraph I describe an interesting approach that has been very effective in the drug 

industry. This mimicking approach, illustrated in Figure 1-C, uses a reasoning that can easily 

be translated into a bioinformatics approach to mine for bioactive peptides in food.  

Protein-protein interactions are difficult to inhibit. Thus it is not evident to expect that a 

peptide may inhibit a Protein-protein interaction by mimicking a region of the protein where 

the interaction takes place. Indeed peptides can be small and one may expect low structure 

conservation relative to the protein. Interestingly and unexpectedly, a study carried out on 

protein kinase C (PKC) has demonstrated that competitive inhibition of this protein by a 

peptide that mimics the interaction region of this protein is possible. 

PKC are a family of serine/threonine kinases, which are involved in many signaling 

events. These enzymes are associated with many diseases including cancer, diabetes, heart 

attack, stroke, and heart failure. Because of this association great attention has been made to 

generating PKC isoenzyme-selective inhibitors that target the active enzyme. This approach 

has been - to say the least- challenging. 

This all started with the observations made by Alistair Aitken that 14-3-3, a protein he 

found to inhibit PKC , and annexin I, a protein found by Mochly-Rosen and co-workers to 

bind βPKC , share a 12-amino-acid sequence of homology triggered an interesting idea. 

Mochly-Rosen and co-workers, reasoned that because these two unrelated proteins share this 

region, and that both bind to PKC, this region may mediate the binding of both proteins to 

PKC. 

Mochly-Rosen and co-workers, decided to investigate the action of this peptide 

(consequently named peptide I) on PKC interaction with RACK and annexin I. The results 

showed that consequently peptide I prevented the access of the active enzyme to its 

substrates, leading to inhibition of the downstream physiological responses (the anchoring of 

activated PKC to RACK is inhibited). 

This approach has since been used in many other studies. From our perspective it is 

easy to see how this approach could be computationally applied to thousands of interacting 

proteins to yield possible common regions responsible for these interactions. This 

competitive inhibition of PKC by a region that mimics its interaction with other proteins is 

potentially a good method to identify new functional food peptides. The idea is that unrelated 

protein interacting with the same protein may share a common region allowing this binding to 

occur. In other words, a pathway may be promoted or inhibited via these mimicking peptides. 

Another similar example of the presence of a similar sequence in unrelated proteins is 

the presence of KEN-box motifs in unrelated proteins. Indeed these motifs are used by the 

Anaphase-Promoting Complex (APC/C), which is a ubiquitin ligase complex that plays a 

major role in regulation of signal transduction, to mark cell cycle proteins for degradation by 

the 26S proteasome. Using a computational approach Sushama Michael and co-authors found 

many new instances of KEN motifs in many proteins .The authors used protein intrinsic 
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disorder and evolutionary conservation to separate between possibly functional and non-

functional KEN motifs. Indeed intrinsic protein disorder has been shown to be rich in motifs 

and evolves similarly between proteins of the same complex. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Method 4: Positive selection may play a key role in identifying new bioactive peptides in 

food proteins: 

When I and Prof Denis Shields investigated the significant shift in charge and 

isoelectric point of milk proteins between different species we realized that an important 

contributor to these shifts are the significant differences between amino acids composition at 

certain positions in different mammalian milk proteins . Many of these residues we predicted 

to be under positive selection. But a major side observation we had made from these results is 

the overlap between bioactive peptides, found in bovine milk casein, and residues that are 

under positive Darwinian selection (this is illustrated in Figure 4 of). Most of the known 

literature peptides in -casein seem to either overlap over these residues or be adjacent to 

them in the parent sequence. One of the results of this study is that positive selection seems to 

be an indicator for the presence of a bioactive peptide. In other words, residues in bioactive 

 

Figure 2. Schematic representation of a centralized database for functional food 

peptides. A user can either add information into the database by giving the activity they 

investigated, the peptides they tested, the assay they used, and the positive or negative results 

they found. DB stands for database, and aa for amino acid. 
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peptides or surrounding them seem to be under fast sequence evolution, perhaps the 

consequence of a species adaptation to varying needs in different species. It would be 

interesting in further studies to see if this observation extends to other known bioactive 

peptides. 

The above seems to contradict the evolutionary conservation method used by Edwards 

and coworkers to define novel platelet aggregation peptides. It is expected that some 

functions are widely needed in many species and are expected to be conserved, while other 

are more species specific, for example anti-opioid function seems to be an activity that is not 

conserved (casoxin-A; ), and thus species specific. Thus, both methods are not a contradiction 

per se but the result of the different functionalities carried by a bioactive peptide that may 

need to be conserved or not.  

A possible way for finding bioactives in a protein sequence using this method is to 

investigate the residues under positive selection and test the peptide that contain these 

selected residues. Delineating the peptide will be somewhat challenging and would possibly 

require a few trials and errors. 

 

Possible success using the methods above: 

The mechanisms of action of many of the commercial or literature known food bioactive 

peptides remain unknown. Thus it is hard to measure the success rate of approach 1 and 3 on 

re-discovering these known peptides, as both these methods require a particular knowledge of 

what pathways or interactions one wants to target. However using method 2, which only 

depends on the sequence, would have discovered the tri-peptide “IKW” an ACE-inhibitory 

peptide. Furthermore using method 4, which also depends on the protein sequence would 

have allowed us to discover the Opioid antagonist Casoxin A and C in casein, and at least 

highlight another Opioid antagonist in -casein namely Casoxin B , and the antithrombotic 

peptide Casoplatelin also found in -casein. 

Method 1 yielded positive results most likely because the assayed effect -a platelet 

response- is an inherent part of the native protein function. The use of this method without 

some prior knowledge of the disease targets or protein interactions required to yield a positive 

effect on the disease under consideration will be of ineffective. Once this bigger picture is set 

for a given species such as human, mining for peptides in the homologous proteins in plants 

of their counter parts in human becomes feasible. And method 1 would potentially lead to 

significant results 

Similarly to method 1, the use of method 3 will require prior knowledge of what 

interaction we would like to inhibit. Once this knowledge is established the identification of 

peptides in food proteins that would mimic the interacting protein becomes possible. 

 

Other existing methods to predict functional regions in a protein sequence. 

There are some other methods to predict functional regions in protein sequences, these 

include searches for Molecular Recognition Features (MoRFs) and various short linear motif 

(SLiMs). But from my own experience these predictors have failed to predict novel, 

functional, and commercially viable bioactive peptides. A possible explanation for this is that 

SLiMs for example are usually found in disordered regions of a protein. It has been shown 

for example that differences between disordered regions in duplicates can cause functional 

divergence given that some will acquire new motifs while others do not. Protein disordered 
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regions happen to also be post-translationally modified regions, phosphorylated and 

glycolsylated. This fact makes it very hard for enzymes to reach and cleave potential peptides 

in these regions. So although these disordered sequences may have peptides, they will be 

impossible to reach easily without heavily modifying or breaking the protein, something the 

food industry will not be too keen on, for many reasons one of which is taste. Further 

research in this area will allow a better understanding of the relationship –if any- between 

MoRFs and/or SLiMs and the bioactive food peptides. 

 

A worldwide database for bioactive peptides: Includes information about peptides that 

presented an activity and ones that did not present any activity: 

In order to systematically develop bioinformatic methods to analyze, predict bioactive 

peptides, and aid researchers in discovering new ones it is important to create a central 

database (Figure 2). This database will centralize all available information about peptides that 

have been tested on an assay. The type of assay should be predefined in the database, where 

the user will only need to select the assay they have used. This is to minimize results that are 

not conformational to known and widely accepted assays. What is crucial for any predictions 

is the use of published and unpublished data. Many peptides have been tested but yielded 

negative results in some assays. This unwanted data is currently an unused mine of 

information. Indeed, these negative results are as crucial as is the information about the 

peptides that yield positive results. One may not observe any commonalities between 

peptides that have shown a positive action on an assay in relation to a disease, but contrasting 

this information with peptides that have shown negative effects in the same disease related 

assays may lead to discovering the key characteristics needed for the functionality of these 

peptides. 

This central database will not only contain food related bioactive peptides, but will 

integrate with all peptide databases resources to enrich the set of peptides for each disease 

thus increasing the prediction power for novel bioactive peptide (Figure 2). 

As mentioned above, there seems to be no clear-cut and general method for discovering 

novel bioactive peptides. Some methods may be good at predicting bioactive peptides for a 

certain disease but do not work on another. For this reason, it is important to implement all 

these different methods automatically on each group of peptides (Figure 2; a group of 

peptides is defined as a set of peptides that share a common characteristics such as they all 

lower cholesterol). The data that is constantly updated in the central database will be passed 

through different bioinformatic methods, such as the ones described above. For example, an 

amino acid preference matrix will be constructed for each disease. An evolutionary 

characterization of each peptide, whereby the closest homologs of the proteins that contains 

these peptides are aligned to determine signals of positive selection, which seems to be an 

indicator for the presence of a bioactive peptide (Figure 1-b).  

 

The bigger picture: effectively integrating bioinformatics and experimental work to 

mine for new food bioactive peptides.  

Here I recommend a process for effectively discovering novel bioactive peptides. The aim of 

these approaches is to accelerate the tie between finding an active hydrolysate and 

discovering the peptides responsible for this activity. This process will integrate three 

different approaches as outlined in Figure 3 and discussed in more detail below.  

The most effective and commonly used method for identifying new bioactive peptides 
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is the generation of digested food or hydrolysates (Figure 3, top panel). Corn for example will 

undergo digestion with a combination of different enzymes, or different bacterial organisms 

under different conditions (pH, temperature, time in contact with enzyme). This method is 

purely experimental and will produce hundreds of different hydrolysates that are then 

experimentally tested in different assays representing different diseases. 

The aim of any organization conducting this study is the commercialization of the 

positive results. A positive hydrolysate that actively lowers a disease can either be 

commercialized as is, in which case the claims on this product are limited. Or it can be 

further mined to find the bioactive element(s) and thus improve the claim. Using a 

computational approach at this point is crucial in handling these amounts of data and 

predicting what fragments are the most likely bioactive in each positive hydrolysate. Indeed a 

purely experimental approach would result in years of trial and error, a luxury that industry 

can’t indulge in. Some approaches can then be adopted in bioinformatics to narrow down the 

huge data to a small fraction of candidates likely carrying the required bioactivity. 

 

First approach – Peptides in common between hydrolysates performing similar functions 

can identify the key players in each hydrolysate: 

We are in the situation where many hydrolysates have been tested, some of which 

present a positive action that is sought after. For example some hydrolysates may have been 

tested for their effect on cholesterol and shown to lower cholesterol. The question then 

becomes, which peptides are the most likely carriers of this functionality? If a number of 

hydrolysates have been found to perform similar actions on a given disease, their mass-

spectrometry data (consisting of the lists of peptide sequences that are found in these 

hydrolysates) can be searched for sequences that are common between all the hydrolysates. It 

is indeed the common segments that are the most likely carriers of this bioactivity. This step 

will help reduce the number of candidate peptides to a smaller fraction.  

Two likely scenarios can occur. Firstly, the list of candidate peptides found using this 

approach is small enough to synthesize and test each sequence individually in order to expose 

the true bioactive peptide(s). Secondly, the list of peptides is too large to realistically 

synthesize and test all of them. In this situation a further computational approach is needed to 

segregate the different peptides, and to yield an even smaller set. This is where the integration 

of different bioinformatic methods, some of which are illustrated above, will be useful in 

reducing the data. 

 

Second approach – Integration of different bioinformatic methods to find novel bioactive 

peptides: 

This second approach is used to further reduce the set of candidate peptides found 

using the 1st approach. The overall strategy of detecting new bioactive elements cannot 

succeed without further understanding the characteristics of what one is looking for. One 

cannot search a hydrolysate aimlessly without a goal. The in-silico prediction of peptides 

should run in parallel to any hydrolysate testing and mining.  
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As discussed above, there are many methods that can be integrated together to yield a better 

predictive power for bioactivity. Some of these were discussed above, these include the 

evolutionary approach, the amino acid composition preference approach, the mimicking and 

competition approach. Also as discussed above, some methods may have a higher predictive 

power on certain disease. This is why it is important to integrate all of these to extract the 

most information. It is in this second approach where the need for a worldwide functional 

peptide database is highlighted. Indeed the candidates from the first approach can be used as 

a query against this database, which will perform all the methods discussed above (together 

with future methods) and will provide information on how likely each peptide is to be 

bioactive in a given assay. This of course can only be provided when sufficient information is 

collected in the database. The more information we find in the literature the better our 

  

Figure 3. Integrating experimental results with bioinformatics to accelerate bioactive 

detection in food.  
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predictive power becomes.  

So far these approaches only deal with peptides visible in mass-spectrometry. In many 

cases the peptides found by mass-spectrometry only cover very little of the parent proteins 

they derive from. It is not unreasonable to suggest that much of the bioactivity may be in 

regions that are not seen in mass-spectrometry and these regions should also be searched. 

 

Third approach – Filling the gaps of mass-spectrometry can allow the identification of new 

bioactive peptides that otherwise would not be identified 

This third approach is also computationally oriented (Figure 3). The initial aim of this 

approach is filling the gaps of mass-spectrometry. Although mass-spectrometry has provided 

a great source of information of the fragments present in the hydrolysate, it is often limited. 

Searching computationally for bioactive fragments in some hydrolysates with poor coverage 

is limited. A way to tackle this issue is by computationally digesting the proteins of the initial 

food of interest, corn proteins for example. Knowing the enzymes that have been used to 

generate the hydrolysate one can computationally predict where these enzymes will cleave in 

the areas that Mass-spectrometry failed to see. Bear in mind that prediction of enzyme 

digestion can be tricky, especially in regions of post-translational modification. An enzyme 

may be predicted to cleave a residue, but in reality this residue is glycosylated, in which case 

the sugars may prevent the enzyme from cleaving at that position. Nonetheless this approach 

is currently the best way to predict bioactivity in the hidden regions of mass-spectrometry. 

The peptides found in this approach can be put through approach 1 and 2 to get a final 

small set of candidate peptides ready for experimental validation. 

 

CONCLUSION: 

The integration of bioinformatics with food mining has so far been slow. Many issues are 

hampering the advancement in this field. Some of these include absence of bioinformatic 

mining tools specifically coded for the food research needs; the insufficient systemization of 

experimental assay testing of bioactive peptides; a rich central functional food database that 

bioinformatics can mine. 

I described a few successful methods that have found novel bioactive peptides (Figure 

1). These methods have been used on a selection of different questions, and have great 

potential in discovering bioactive peptide in the functional food area (Figure 1). 

The diversity of the methods indicates that multiple approaches are needed to find 

bioactive peptides. Some methods work well for a given disease, while they do not on others. 

A combination of different bioinformatic methods is needed to mine food for bioactive 

peptides (Figure 1).  

Finally, integrating both bioinformatic and experimental biology is the only way that 

saves both money and time in discovering new bioactive peptides (Figure 3). I discuss a 

process that I think will achieve a great yield in mining for new bioactive peptides I food 

(Figure 3). For this reason, a centralized database accessible by all food laboratories, and 

containing published and unpublished data is necessary to increase the predictive power of 

bioinformatics in mining food (Figure 2). This database will implement a variety of 

approaches found to have been successful in mining for bioactive peptides, as the ones 

mentioned in the text and shown in Figure 1. 
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