Charnoly body as a novel biomarker of nutritional stress in Alzheimer’s Disease
DOI:
https://doi.org/10.31989/ffhd.v6i6.259Abstract
Background: Charnoly body (CB) was discovered as universal biomarker of cell injury in the developing undernourished rat cerebellar Purkinje neurons and in the intrauterine Domoic acid and Kainic acid-exposed mice hippocampus and hypothalamic neurons. The incidence of CB increased with the severity of nutritional and environmental neurotoxic insult.
Purpose: We proposed that stress (nutritional/environmental)-induced cortisol release augments, whereas metallothioneins (MTs), insulin-like growth factor (IGF-1), and brain-derived neurotropic factor (BDNF inhibit CB formation to prevent progressive neurodegeneration, early morbidity, and mortality in Alzheimer’s disease (AD).
Results: CB is a pre-apoptotic biomarker of compromised mitochondrial bioenergetics and is formed in the most vulnerable cell in response to nutritional stress, intrauterine infection, environmental toxins, and/or drugs of abuse due to free radical overproduction and mitochondrial genome down-regulation. It appears as a pleomorphic, electron-dense multi-lamellar, quasi-crystalline stack of degenerated mitochondrial membranes in highly susceptible neurons and may be induced by microbial infection. CB formation was accompanied with stunted neuritogenesis in the aging mitochondrial genome knock out (RhOmgko) human dopaminergic (SK-N-SH, SHS-Y-5Y) neurons due to down-regulation of ubiquinone NADH oxidoreductase (complex-1). Transfection of RhOmgko neurons with ubiquinone NADH oxidoreductase (complex-1) gene and CoQ10, inhibited CB formation and augmented neuritogenesis, as confirmed in α-synuclein-metallothioneins triple knock out and weaver mutant mice. CB formation was attenuated in MTs-over-expressing weaver mutant mice.
Findings: Accumulation of CB at the junction of axon hillock impairs axoplasmic transport of enzymes, neurotransmitters, hormones, neurotropic factors (NGF, BDNF), and mitochondria at the synaptic terminals to cause cognitive impairment, early morbidity, and mortality. Nonspecific induction of CB causes alopecia, myelosuppression, and GIT symptoms in multi-drug-resistant malignancies. Antioxidants and MTs inhibit CB formation as free radical scavengers by zinc-mediated transcriptional regulation of genes involved in growth, proliferation, differentiation, and development. Hence drugs may be developed to prevent CB formation and/or enhance charnolophagy as a basic molecular mechanism of intracellular detoxification to avert cognitive impairments in AD.
Conclusion: Brain regional monoamine oxidase-specific CBs can be detected by 11C or 18F-labeled MAO-A or MAO-B inhibitors in vivo in addition to 18FdG-PET neuroimaging to quantitatively assess and improve the mitochondrial bioenergetics in AD.
Key Words: Charnoly Body, Nutrition, Metallothioneins, Mitochondrial DNA, RhOmgko Neurons, Cortisol, IGF-1, BDNF, Alzheimer’s Disease
Downloads
Published
Issue
Section
License
Any manuscripts or substantial parts of it, submitted to the journal must not be under consideration by or previously published in any other journal or citable form. Authors are required to ensure that no material submitted as part of a manuscript infringes existing copyrights or the rights of a third party. In submitting one's article in any form, the author has assigned the FFC publishing rights and has agreed to an automatic transfer of the copyright to the publisher. This is so that the FFC may create print option journals, for example, at the FFC’s discretion. If the author wishes to distribute their works by means outside of the FFC, for example within their community, they will have to place a request.
Correspondence concerning articles published in Functional Foods in Health and Disease is encouraged. While derivative works (adaptations, extensions on the current work, etc.) are allowed, distribution of the modified material is not allowed without permission from the FFC.