Assessment of squalene effect on antioxidant enzymes and free radicals in patients with type 2 diabetes mellitus
DOI:
https://doi.org/10.31989/bchd.v5i11.1005Resumé
Background: Diabetes mellitus as a metabolic disease can have serious consequences. Due to their chemical properties,bioactive compounds can play a role in diabetes management. Squalene is a natural oil and bioactive compound. The anti-inflammatory and antioxidant effects of squalene have been discussed in recent studies. Squalene plays a role in controlling diabetes by maintaining the oxidant/antioxidant balance.
Objective: The main purpose of this study was to evaluate the antioxidant effect of different doses of squalene, on different days, on the levels of some oxidative indices and the activity of antioxidant enzymes in groups of people with type 2 diabetes and compare them with each other and healthy people.
Methods: 150 individuals were recruited in this study. These individuals were separated into five groups. Group one contained 30 individuals, representing the healthy control group. Groups 2, 3, 4 and 5 included subjects with type 2 diabetes. Each of the subjects in groups 3, 4 and 5 received squalene in doses of 200, 400 and 600 mg as an oral capsule (liquid filled oral), respectively for 84 days. Subjects in Group 2 did not receive squalene. Catalase, superoxide dismutase, glutathione peroxidase (as antioxidant indicators) activities and the levels of hydrogen peroxide, nitric oxide and reactive oxygen species (as oxidant indicators) were assayed.
Results: In 84 days, a statistically significant difference (P value < 0.05) was observed in all the diabetic groups compared to the healthy group. In the comparison between groups receiving squalene with each other, there was a significant increase (P value < 0.05) in catalase and superoxide dismutase activity, depending on squalene dose and time. There was not a statistically significant (P value > 0.05) increase in glutathione peroxidase activity. Statistically significant changes in oxidative indices were not dose-dependent or time-dependent.
Conclusion: Based on the findings of this study, a dose of 600 mg of squalene in 84 days is effective in increasing catalase and superoxide dismutase activity and reducing hydrogen peroxide levels. Squalene can play an important role in controlling and reducing the consequences of diabetes caused by changes in the oxidant/antioxidant balance.
Keywords: squalene, type 2 diabetes, T2D, antioxidant enzymes, bioactive compounds, free radicals
Downloads
Publiceret
Nummer
Sektion
Licens
Any manuscripts or substantial parts of it, submitted to the journal must not be under consideration by or previously published in any other journal or citable form. Authors are required to ensure that no material submitted as part of a manuscript infringes existing copyrights or the rights of a third party. In submitting one's article in any form, the author has assigned the FFC publishing rights and has agreed to an automatic transfer of the copyright to the publisher. This is so that the FFC may create print option journals, for example, at the FFC’s discretion. If the author wishes to distribute their works by means outside of the FFC, for example within their community, they will have to place a request.
Correspondence concerning articles published in Functional Foods in Health and Disease is encouraged. While derivative works (adaptations, extensions on the current work, etc.) are allowed, distribution of the modified material is not allowed without permission from the FFC.